SIDEROPHORE PRODUCTION OF THE RHIZOBACTERIA ISOLATED FROM LOCAL “KAMBA” RICE PLANTS, POSO REGENCY IN CENTRAL SULAWESI

Authors

  • Sri Sudewi Department of Agrotechnology Faculty of Agriculture, University of Alkhairaat Palu
  • Baharuddin Patandjengi Department of Plant Pest and Disease, Faculty of Agriculture, University of Hasanuddin Makassar
  • Ambo Ala Department of Agrotechnology, Faculty of Agriculture, University of Hasanuddin Makassar
  • Muh Farid BDR Department of Agrotechnology, Faculty of Agriculture, University of Hasanuddin Makassar
  • Abdul Rahim Saleh Department of Agrotechnology Faculty of Agriculture, University of Sintuwu Maroso Poso
  • Ratnawati Ratnawati Department of Agrotechnology Faculty of Agriculture, University of Alkhairaat Palu

DOI:

https://doi.org/10.24246/agric.2022.v34.i2.p225-238

Keywords:

Siderophore, rhizobacteria, kamba, biocontrol

Abstract

Rhizobacteria isolated from plant roots have the ability to produce siderophore compounds. These compounds play a role in inhibiting the growth of pathogens by binding to iron (Fe3+) which is needed by pathogens in their development. This research was aimed to find out the siderophore-producing bacteria isolated from local Kamba rice plants and their potential as biocontrol agents. Among the 28 isolates that were successfully isolated from the Kamba local rice rhizosphere, 10 isolates had the potential to produce siderophores with different morphological characters. The test was carried out to see the bacterial isolates capabilities to produce siderophores from two types of siderophores namely catechol and salicylate types. For the catechol type, the highest concentration of siderophore was found in the KBA8 bacterial isolate with 10.990 mg L-1, while the lowest was in the KBA1 bacterial isolate with only 5.876 mg L-1. The salicylate type siderophore with the highest concentration produced 9.493 mg L-1 was from the RKGU15 isolate and the lowest was found in KBU14 isolate which produced only 2.994 mg L-1. The isolates included in the Gram-positive group were 4 isolates while the Gram- negative group were 6 isolates and 90% isolates were able to produce the enzyme catalase. The results of this study indicate that all bacterial isolates can produce siderophores so that they have the potential as biocontrol agents to support environmentally friendly and sustainable agriculture.

Downloads

Download data is not yet available.

References

Ahmed E and Holmström S J M 2014 Siderophores in Environmental Research: Roles And Applications Microb. Biotechnol 7, p. 196–208

Ali, S.S., and N.N. Vidhale. 2013. Review Article Bacterial Siderophore and their Application : A review. Int.J.Curr.Microbiol.App.Sci 2(12) p. 303–312.

Atkinson, Merelle, M., J. Huang, and A. Knopp, James. 1985. Hypersensitivity of Suspension-Cultured Tobacco Cells to Pathogenis Bacteria. Physiol. Biochem. 75(11) p. 1270–1274.

Baars, O., X. Zhang, F.M.M. Morel, and M.R. Seyedsayamdost. 2016. The Siderophore Metabolome of Azotobacter vinelandii. Appl. Environ. Microbiol. 82(1) p. 27–39. doi: 10.1128/AEM.03160-15.

Ben-David, A., and C.E. Davidson. 2014. Estimation method for serial dilution experiments. J. Microbiol. Methods 107 p. 214–221. doi: 10.1016/j.mimet.2014.08.023.

Budzikiewicz, H. 2001. Siderophore-Antibiotic Conjugates Used as Trojan Horses Against Pseudomonas aeruginosa. Curr. Top. Med. Chem. 1(1) p. 73–82. doi: 10.2174/1568026013395524.

Cappucino, J.G., and N. Sherman. 2008. Microbiology : a laboratory manual-10th ed. (K. Churchman, editor). 10th ed. United States of America.

Chen, C., K. Xin, M. Li, X. Li, J. Cheng, et al. 2016. Paenibacillus sinopodophylli sp. Nov., a siderophore-producing endophytic bacterium isolated from roots of Sinopodophyllum hexandrum (Royle) ying. Int. J. Syst. Evol. Microbiol. 66(12) p. 4993–4999. doi: 10.1099/ijsem.0.001458.

Cornelis, P. 2010. Iron Uptake and Metabolism nn Pseudomonads. Appl. Microbiol. Biotechnol. 86(6) p. 1637–1645. doi: 10.1007/s00253-010-2550-2.

Dewedar, S., M.S. Abdel-Hamid, D. EL-Ghareeb, A.A. Haroun, A.F. ElBaz, et al. 2018. Statistical Optimization and Chemical Characterization of Newly Extracted Siderophore From Azotobacter chroococcum. Biosci. Res. 15(2) p. 1163–1177.

Dimkpa, C. 2016. Microbial siderophores: Production, Detection and Application In Agriculture and Environment. Endocytobiosis Cell Res. 27(2) p. 7–16.

Ferreira, C.M.H., H.M.V.M. Soares, and E. V. Soares. 2019. Promising Bacterial Genera For Agricultural Practices: An Insight on Plant Growth-Promoting Properties and Microbial Safety Aspects. Sci. Total Environ. 682 p. 779–799. doi: 10.1016/j.scitotenv.2019.04.225.

Fgaier, H., and H.J. Eberl. 2011. Antagonistic Control of Microbial Pathogens Under Iron Limitations By Siderophore Producing Bacteria In A Chemostat Setup. J. Theor. Biol. 273(1) p. 103–114. doi: 10.1016/j.jtbi.2010.12.034.

Fragnire, C., M. Serrano, E. Abou-Mansour, J.P. Métraux, and F. L’Haridon. 2011. Salicylic acid and its Location In Response to Biotic and Abiotic Stress. FEBS Lett. 585(12) p. 1847–1852. doi: 10.1016/j.febslet.2011.04.039.

Harni, R., and M.S. Sinaga. 2015. Mekanisme Bakteri Endofit Mengendalikan Nematoda Pratylenchus brachyurus pada Tanaman Nilam. Bul. Penelit. Tanam. Rempah dan Obat 23(1) p. 102–114. doi: 10.21082/bullittro.v23n1.2012.

Hider, R.C., and X. Kong. 2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27(5) p. 637–657. doi: 10.1039/b906679a.

Kesaulya, H., Baharuddin, B. Zakaria, and S.A. Syaiful. 2015. Isolation and Physiological Characterization of PGPR from Potato Plant Rhizosphere in Medium Land of Buru Island. Procedia Food Sci. 3 p. 190–199. doi: 10.1016/j.profoo.2015.01.021.

Khan, A., P. Singh, and A. Srivastava. 2018. Synthesis, Nature and Utility of Universal Iron Chelator – Siderophore: A review. Microbiol. Res. 212–213(October) p. 103–111. doi: 10.1016/j.micres.2017.10.012.

Kousser, C., C. Clark, S. Sherrington, K. Voelz, and R.A. Hall. 2019. Pseudomonas aeruginosa inhibits Rhizopus Microsporus Germination Through Sequestration of Free Environmental Iron. Sci. Rep. 9(1): 1–14. doi: 10.1038/s41598-019-42175-0.

Kumar, P., S. Thakur, G.K. Dhingra, A. Singh, M.K. Pal, et al. 2018. Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatal. Agric. Biotechnol. 15(June) p. 264–269. doi: 10.1016/j.bcab.2018.06.019.

Kumar, S.V., Menon, S., Agarwal, H and Gopalakrishnan, D., 2017. Characterization and Optimization of Bacterium Isolated From Soil Samples For The Production of Siderophores. Resour. Technol. 3(4) p. 434–439. doi: 10.1016/j.reffit.2017.04.004.

Kuswinanti, T., B. Baharuddin, and S. Sukmawati. 2014. Efektivitas Isolat Bakteri dari Rizosfer dan Bahan Organik Terhadap Ralstonia solanacearum dan Fusarium oxysporum pada Tanaman Kentang. J. Fitopatol. Indones. 10(2) p. 68–72. doi: 10.14692/jfi.10.2.68.

Liu, D., Q. Yang, K. Ge, X. Hu, G. Qi, et al. 2017. Promotion of Iron Nutrition And Growth on Peanut by Paenibacillus Illinoisensis and Bacillus Sp. Strains In Calcareous Soil. Brazilian J. Microbiol. 48(4) p. 656–670. doi: 10.1016/j.bjm.2017.02.006.

Murali, A., and S. Patel. 2017. The Effect of Different Heavy Metal Acetate Solutions on the Inhibition of Catalase Enzyme. J. South Carolina Acad. Sci. 15(2) p. 13.

Pedraza, R.O. 2015. Siderophores Production by Azospirillum: Biological Importance, Assessing Methods and Biocontrol Activity. In: (eds.), F.D.C. et al., editor, Siderophores Production by Azospirillum: Biological Importance, Assessing Methods and Biocontrol Activity. Springer International Publishing Switzerland, Argentina. p. 251–262.

Pulingam, T., K. Lin, E. Ali, J. Nelson, I. Julian, et al. 2019. Colloids and Surfaces B : Biointerfaces Graphene oxide exhibits di ff erential mechanistic action towards Gram- positive and Gram-negative bacteria. 181(January) p. 6–15.

Reiner, K. 2010. Catalase-Test-Protocol.pdf. (November 2010) p. 1–9. doi: 66.208.62.130.

Rizzi, A., S. Roy, J.P. Bellenger, and P.B. Beauregard. 2019. Iron homeostasis in Bacillus subtilis Requires Siderophore Production and Biofilm Formation. Appl. Environ. Microbiol. 85(3). doi: 10.1128/AEM.02439-18.

Sah, S., and R. Singh. 2015. Siderophore: Structural and Functional Characterisation - A Comprehensive Review. Agriculture 61(3) p. 97–114. doi: 10.1515/agri-2015-0015.

Saha, M., S. Sarkar, B. Sarkar, B.K. Sharma, S. Bhattacharjee, et al. 2016. Microbial Siderophores and Their Potential Applications: A Review. Environ. Sci. Pollut. Res. 23(5) p. 3984–3999. doi: 10.1007/s11356-015-4294-0.

Sasirekha, B., and S. Srividya. 2016. Siderophore Production By Pseudomonas aeruginosa FP6, A Biocontrol Strain for Rhizoctonia solani and Colletotrichum gloeosporioides Causing Diseases In Chilli. Agric. Nat. Resour. 50(4) p. 250–256. doi: 10.1016/j.anres.2016.02.003.

Sinha, A.K., B. Parli Venkateswaran, S.C. Tripathy, A. Sarkar, and S. Prabhakaran. 2019. Effects of Growth Conditions on Siderophore Producing Bacteria and Siderophore Production from Indian Ocean Sector of Southern Ocean. J. Basic Microbiol. 59(4) p. 412–424. doi: 10.1002/jobm.201800537.

Sivasakthivelan, P., and D. Stella. 2012. Studies on the Phytohormone Producing Potential of Agriculturally Beneficial Microbial (ABM) Isolates from Different Rhizosphere Soils of Sunflower in Tamil Nadu. Int. J. Pharm. Biol. Arch. 3(5): p. 1150–1156.

Suslow, T., M. Schroth, and M. Isaka. 1982. Application of a Rapid Method for Gram Differentiation of Plant Pathogenic and Saprophytic Bacteria Without Staining. Am. Phytopathol. Soc. 72(7) p. 917–918.

Vijayalakshmi, N.R., M. Swamy, and N. Naik. 2019. In Vitro Screening and Production of Plant Growth Promoting Substances by Azospirillum Isolates from Rhizoplane of Foxtail Millet Setaria italica (L.) Beauv. Int. J. Pure Appl. Biosci. 7(1) p. 224–229. doi: 10.18782/2320-7051.7340.

Wang, X., Q. Li, J. Sui, J. Zhang, Z. Liu, et al. 2019. Isolation and Characterization of Antagonistic Bacteria Paenibacillus jamilae HS-26 and Their Effects on Plant Growth. Biomed Res. Int. 2019. doi: 10.1155/2019/3638926.

Yu, S., C. Teng, J. Liang, T. Song, L. Dong, et al. 2017. Characterization of Siderophore Produced By Pseudomonas syringae BAF.1 and Its Inhibitory Effects on Spore Germination and Mycelium Morphology of Fusarium oxysporum. J. Microbiol. 55(11) p. 877–884. doi: 10.1007/s12275-017-7191-z.

Yu S, Teng C, Bai X, Liang J, Song T, Dong L, Jin Y and Qu J, 2017. Optimization of Siderophore Production By Bacillus Sp. PZ-1 and Its Potential Enhancement of Phytoextration of PB From Soil. J. Microbiol. Biotechnol. 27 p. 1500.

Zhang, N., X. Ma, Y. Yin, Y. Chen, C. Li, et al. 2019. Synthesis of CuO-CdS Composite Nanowires and Their Ultrasensitive Ethanol Sensing Properties. Inorg. Chem. Front. 6(1) p. 238–247. doi: 10.1039/c8qi00951a.

Downloads

Published

2022-12-17

How to Cite

Sudewi, S., Patandjengi, B., Ala, A., BDR, M. F., Saleh, A. R., & Ratnawati, R. (2022). SIDEROPHORE PRODUCTION OF THE RHIZOBACTERIA ISOLATED FROM LOCAL “KAMBA” RICE PLANTS, POSO REGENCY IN CENTRAL SULAWESI. Agric, 34(2), 225–238. https://doi.org/10.24246/agric.2022.v34.i2.p225-238

Issue

Section

Articles