TECHNOLOGIES TO REDUCE EMISSION OF METHANE AND NITROUS OXIDE IN RICE FIELDS: A BRIEF REVIEW
DOI:
https://doi.org/10.24246/agric.2022.v34.i2.p197-210Keywords:
natural materials, methane, nitrous oxide, rice fieldsAbstract
Climate change caused by increasing anthropogenic greenhouse gas concentrations can threaten food security. Agricultural land is a source of food availability, however it is one source of GHG emissions, especially methane and nitrous oxide. Integration management of land, water, and plants in an integrated manner can be an effort to reduce the impact of climate change. This paper aims to inform the technologies to reduce emissions of methane and nitrous oxide in rice fields. One of the technologies to mitigate greenhouse gas emissions on agricultural land is through the use of natural materials as an inhibitor for the formation of methane and nitrous oxide in the soil due to the content of secondary metabolites in natural ingredients. Natural materials can simultaneously increase nitrogen nutrient uptake and improve crop yields. The methane production in rice fields is suppressed by more than 30% by coconut fiber, turmeric rhizomes, leaf of Ageratum conyzoides, and the leaf of Cosmos caudatus; while application of Cosmos caudatus and Ageratum conyzoides can also reduce the production of nitrous oxide more than 20%, respectively.
Downloads
References
Bappenas. 2019. National Adaptation Plan: Executive Summary 2019. Ministry of National Development Planning/National Development Planning
Agency (Bappenas). Jakarta. 28p.
Benckiser G., Schartel T., Weishe A. 2015. Control of NO3 - and N2O Emissions in Agroecosystems: A Review. Agron. Sustain. Dev. 35: 1059-1074.
Brodt S., Kendall a., Mohammadi Y., Arslan A., Yuan J., Lee I.S., Linquist B. 2014. Life Cycle Greenhouse Gas Emissions in California Rice Production. Field Crops Research. 169: 89–98. Doi:10.1016/j.fcr.2014.09.007
Cardoso-Gutierrez E., Aranda-Aguirre E., Robles-Jimenez L.E., Castelan-Ortega O.A., Chay-Canul A.J., Foggi G., Angeles-Hernandez J.C., Vargas-Bello-Perez E., Gonzalez-Ronquillo M. 2021. Effect of Tannins from Tropical Plants on Methane Production from Ruminants: A Systematic Review. Veterinary and Animal Science. 14:100214. Doi: 10.1016/j.vas.2021.100214
Chan A.S.K., Parkin T.B. 2000. Evaluation of Potential Inhibitors of Methanogenesis and Methane Oxidation in A Landfill Cover Soil. Soil Biology & Biochemistry. 32: 1581-1590.
Chen D., Li Y., Grace P., Mosier, R.A. 2008. N2O Emissions from Agricultural Lands: A Synthesis of Simulation Approaches. Plant & Soil. 309: 169-189.
Du Y., Guo X., Li J., Liu Y., Luo J., Liang Y., Li T. 2022. Elevated Carbon Dioxide Stimulates Nitrous Oxide Emission in Agricultural Soils: A Global Meta-Analysis. Pedosphere. 32(1): 3–14. Doi: 10.1016/S1002-0160(21)60057-7
Dubey S.K. 2005. Microbial Ecology of Methane Emission in Rice Agroecosystem: A Review. Applied Ecology & Environmental Research. 3(2):1-27.
Dundek P., Holík L., Rohlik T., Hromadko L., Vranova V., Rejsek K., Formanek P. 2011.Methods of Plant Root Exudates Analysis: A Review. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 32(3): 241-246.
Gorh D., Baruah K.K., Gogoi N. 2018. Analysis of Greenhouse Gas (Methane and Nitrous Oxide) Emission and Global Warming Potential from Rice
Fields: with Reference to Biological Mitigation of Climate Change. SDRP Journal of Earth Sciences & Environmental Studies. 3(2). Doi: 10.25177/JESES.3.2.3
Guo M., Song W., Tian J. 2020. Biochar-Facilitated Soil Remediation: Mechanisms and Efficacy Variations. Front. Environ. Sci. 8:521512. Doi:
3389/fenvs.2020.521512
Haider F.U., Coulter J.A., Cai L., Hussain S., Cheema S.A., Wu J., Zhang R. 2022. An Overview on Biochar Production, Its Implications, and
Mechanisms of Biochar-Induced Amelioration of Soil and Plant Characteristics. Pedosphere. 32(1):107–130. Doi: 10.1016/S1002-0160(20)60094-7
Haque M.M., Biswas J.C., Kim S.Y., Kim P.J. 2017. Intermittent drainage in paddy soil: ecosystem carbon budget and global warming potential. Paddy Water Environ. 15:403–411. Doi:10.1007/s10333-016-0558-7
Hussain S., Peng S., Fahad S., Khaliq A., Huang J., Cui K., Nie L. 2014. Rice Management Interventions to Mitigate Greenhouse Gas Emissions: A Review. Environ. Sci. Pollut. Res. Doi: 10.1007/s11356-014-3760-4
IAARD. 2011. General Guidelines of Climate Change Mitigation in Agricultural Sector. Indonesian Agency for Agricultural Research and
Development.
IAERI. 2011.Annual Report of IAERI Researchs Activity of 2010. Indonesian Agricultural Environment Research Institute.
Jiang Y., Wang L., Yan X., Tian Y., Deng A., Zhang W. 2013. Super Rice Cropping will Enhance Rice Yield and Reduce CH4 Emission: A Case Study
in Nanjing, China. Rice Science. 20(6): 427-433.
Jugold A., Althoff F., Hurkuck M., Greule M., Lenhart K., Lelieveld J., Keppler F. 2012. Non-Microbial Methane Formation in Oxic Soils. Biogeosciences. 9: 5291–5301.
Kang S.W., Yun J.J., Park J.H., Cheong Y.H., Park J.H., Seo D.C., Cho J.S. 2021. Effects of Biochar and Barley Straw Application on The Rice Productivity and Greenhouse Gas Emissions of Paddy Field. Applied Biological Chemistry. 64: 92. Doi: 10.1186/s13765-021-00666-7
KLHK. 2016. First Nationally Determined Contribution Republic of Indonesia. Kementerian Lingkungan Hidup dan Kehutanan.
KLHK. 2019. Peta Jalan Implementasi Nationally Determined Contribution: Mitigasi. Direktorat Jenderal Pengendalian Perubahan Iklim Kementerian Lingkungan Hidup dan Kehutanan. Jakarta.
Khudori. 2011. Sistem Pertanian Pangan Adaptif Perubahan Iklim. Pangan. 20(2): 105-119.
Ku-Vera J.C., Jiménez-Ocampo R., Valencia-Salazar S.S., Montoya-Flores M.D., Molina-Botero I.C., Arango J., Gómez-Bravo C.A., Aguilar-Pérez
C.F., Solorio-Sánchez F.J. 2020. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front. Vet. Sci. 7:584. Doi: 10.3389/fvets.2020.00584
Lagomarsino A., Agnelli A.E., Linquist B., Adviento-Borbe M.A., Agnelli A., Gavina G., Ravaglia S., Ferrara R.M. 2016. Alternate Wetting and Drying of Rice Reduced CH4 Emissions but Triggered N2O Peaks in A Clayey Soil of Central Italy. Pedosphere. 26: 533–548.
Li B., Fan C.H., Xiong Z.Q., Li Q.L., Zhang M. 2015. The Combined Effects of Nitrification Inhibitor and Biochar Incorporation on Yield-Scaled N2O Emissions from An Intensively Managed Vegetable Field in Southeastern China. Biogeosciences. 12: 2003–2017. Doi: 10.5194/bg-12-2003-2015
Malyan S.K., Bhatia A., Kumar A., Gupta D.K., Singh R., Kumar S.S., Tomer R., Kumar O., Jain N. 2016. Methane Production, Oxidation and Mitigation: A Mechanistic Understanding and Comprehensive Evaluation of Influencing Factor. Science of the Total Environment. 572: 874–896. Doi: 10.1016/j.scitotenv.2016.07.182
Martin C., Rouel J., Jouany J.P., Doreau M., Chilliard Y. 2008. Methane Output and Diet Digestibility in Response to Feeding Dairy Cows Crude Linseed, Extruded Linseed, or Linseed Oil. J. Anim. Sci. 86(10): 2642-2650. Doi: 10.2527/Jas.2007-0774
Martin S.L., Clarke M.L., Othman M., Ramsden S.J., West H.M. 2015. Biochar-Mediated Reductions in Greenhouse Gas Emissions from Soil Amended with anaerobic Digestates. Biomass and Bioenergy. 79: 39-49. Doi: 10.1016/j.biombioe.2015.04.030
Martinez-Fernandez G., Denman S.E., Yang C., Cheung J., Mitsumori M., McSweeney C.S. 2016. Methane Inhibition Alters The Microbial Community, Hydrogen Flow, and Fermentation Response in The Rumen of Cattle. Front. Microbiol. 7:1122. Doi: 10.3389/fmicb.2016.01122
Maryana, Jatmiko S.Y., Pramono J. 2010. Potential of Natural Materials Exploiting as nitrate Inhibitor to Realize Sustainable Agriculture in The Effort Independent of Foods. Proceeding of National Seminar in Food and Energy Securities. Veteran National Development University,Yogyakarta. ISBN: 978-602-98216-0-4. Page 33-40. (in Indonesian)
Mazid M., Khan T.A., Mohammad F. 2011. Role of Secondary Metabolites in defense Mechanisms of Plants. Biology & Medicine Special Issue. 3(2): 232-249.
MEF. 2018.Laporan Inventarisasi Gas Rumah Kaca dan MRV Nasional 2017 [Greenhouse Gas Inventory Report and National MRV 2017], http://ditjenppi.menlhk.go.id/reddplus/images/adminppi/dokumen/lap_igrk_2018.pdf (accessed on 07 November 2018).
Mosier A., Wassmann R., Verchot L., King J., Palm C. 2004.Methane and Nitrous Oxide Fluxes in Tropical Agricultural Soils: Sources, Sinks and Mechanisms. Environment, Development and Sustainability. 6: 11–49.
Naser H.M., Nagata O., Sultana S., Hatano R. 2018. Impact of Management Practices on Methane Emissions from Paddy Grown on Mineral Soil over
Peat in Central Hokkaido, Japan. Atmosphere. 9: 212. Doi:10.3390/atmos9060212
Ning J., Ai S., Cui L. 2018. Dicyandiamide has More Inhibitory Activities on Nitrification than Thiosulfate. PLoS ONE. 13(8): e0200598. Doi: 10.1371/Journal.Pone.0200598
Nueu H.U. 1993. Methane Emission from Rice Fields: Wetland Rice Fields may Make A Major Contribution to Global Warming. BioScience. 43(7): 466-473.
Patra A.K., Kamra D.N., Agarwal N. 2006. Effect of Plant Extracts on In Vitro Methanogenesis, Enzyme Activities and Fermentation of Feed-in Rumen Liquor of Buffalo. Animal Feed Science and Technology. 128(3-4):276-291. Doi: 10.1016/j.anifeedsci.2005.11.001
Piva J.T., Sartor L.R., Sandini I.E., Moraes A., Dieckow J., Bayer C., Rosa C.M. 2019. Emissions of Nitrous Oxide and Methane in A Subtropical Ferralsol Subjected to Nitrogen Fertilization and Sheep Grazing in Integrated Crop-Livestock System. Rev. Bras Cienc. Solo. 43:e0180140. Doi: 10.1590/18069657rbcs20180140
Reyes-Escobar J., Zagal E., Sandoval M.,Navia R., Munoz C. 2015.Development of A Biochar-Plant-Extract-Based Nitrification Inhibitor and Its
Application in Field Conditions. Sustainability. 7: 13585-13596. Doi:10.3390/su71013585
Ruanpan W., Mala T. 2016. The Effect of Some Thai Medicinal Herb Extracts on nitrification Inhibition. Modern Applied Science. 10(2): 146-158.
Sahrawat K.L. 2004. Nitrification Inhibitors for Controlling Methane Emission from Submerged Rice Soils. Current Science. 87(8): 1084-1087.
Santoso A.B. 2016. The Impact of Climate Change on Food Crops Production in The Province of Maluku. Penelitian Pertanian Tanaman Pangan. 35(1): 29-38.
Susilawati H.L., Wihardjaka A., Nurhasan, Setyanto P. 2021. The potency of Natural Materials for Reducing CH4 and N2O Productions from Paddy Soils. Jurnal Ilmu Pertanian Indonesia. 26(4): 499-510. Doi: 10.18343/jipi.26.4.499
Torralbo F., Menendez S., Barrena I., Estavillo J.M., Marino D., Gonzalez-Murua C. 2017. Dimethyl PyrazolBased Nitrification Inhibitors Effect on Nitrifying and Denitrifying Bacteria to Mitigate N2O Emission. Scientific Reports. 7: 13810. Doi:10.1038/s41598-017-14225-y
Upadhyay R.K., Patra D.D., Tewari S.K. 2011. Natural Nitrification Inhibitors for Higher Nitrogen Use Efficiency, Crop Yield, and for Curtailing Global Warming. J. Trop. Agric. 49(1-2): 19-24.
Wang L., Bowatte S., Hou F.J. 2020. Research Progress of Biological Nitrification Inhibitor (BNI) in Reducing Nitrogen Loss and Improving
Nitrogen Use Efficiency in Agricultural Production Systems. Pratacultural Science. 37(3): 1-10. Doi: 10.11829/j.issn.1001-0629.2019-0190.
Wihardjaka A. 2017. Biji Mimba Turunkan Emisi Dinitrogen Oksida di Tanah Sawah Tadah Hujan. Warta Penelitian dan Pengembangan Pertanian. 39(3): 5-7.
Wihardjaka A., Setyanto P. 2007. Emisi dan Mitigasi Gas Rumah Kaca dari lahan Sawah Irigasi dan Tadah Hujan. pp.55-87. Dalam: Fagi, A.M., Pasandaran E., Kurnia U. (eds.). Pengelolaan Lingkungan Pertanian Menuju Mekanisme Pembangunan Bersih. Badan Penelitian dan Pengembangan
Pertanian.
Wihardjaka A., Tandjung S.D., Sunarminto B.H., Sugiharto E. 2012. Methane Emission from Direct Seeded Rice under The Influences of Rice Straw and Nitrification Inhibitor. Indonesian Journal of Agricultural Science. 13(1): 1-11.
Wihardjaka A., Tandjung S.D., Sunarminto B.H., Sugiharto E. 2013. Nitrous Oxide Emission and Nitrogen Uptake Affected by Soil Amendment and
Nematicide in Rainfed Rice Soils at Central Java. Indonesian Journal of Agricultural Science. 14(2): 45-54.
Zhang Q., Xiao J., Xue J., Zhang L. 2020. Quantifying The Effects of Biochar Application on Greenhouse Gas Emissions from Agricultural Soils: A Global Meta-Analysis. Sustainability. 12, 3436. Doi:10.3390/su12083436
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.