LYCOPENE CONTENT IN SEVERAL AGES OF TOMATO CALLUS (Lycopersiconesculentum Mill. cv. Rampai)


  • Yohanes Alvin Goenawan Fakultas Teknobiologi, Universitas Surabaya, Surabaya
  • Katherine Krisyanti Khodjojo Fakultas Teknobiologi, Universitas Surabaya, Surabaya
  • Popy Hartatie Hardjo Fakultas Teknobiologi, Universitas Surabaya, Surabaya
  • Maria Goretti Marianti Purwanto Universitas Surabaya



carotenoid, plant tissue culture, thin-layer chromatography (TLC), UV-Vis spectrophotometry


Tomato (Lycopersiconesculentum Mill. cv. Rampai) is rich in lycopene, a carotenoid group compound with many biological activities, one of which is as an antioxidant. Conventional tomato cultivation is not optimal due to the susceptibility of tomato plants to pests and diseases, even though the need for lycopene continues to increase. Plant tissue culture method can be one solution for lycopene production. Callus tomato cv. Rampai was initiated from cotyledons on MS medium (Murashige& Skoog) with the addition of 1 ppm BA (benzyladenine) and 1.5 ppm IAA (indole-3-acetic acid). Callus aged one week to four weeks were harvested and lycopene was extracted by maceration method using hexane:acetone (9:1) as solvent. The presence of lycopene in callus was confirmed by TLC (thin-layer chromatography) (retention factor value/Rf = 0.56) and UV-Vis spectrophotometry (wavelength that gives maximum absorbance = 472 nm). Lycopene content in tomato callus increased with increasing callus age and was directly proportional to the callus growth index. The highest lycopene level was found in callus aged 4 weeks, which was 0.3094 mg/100 g dry weight callus.


Download data is not yet available.


Alatar, AA., Faisal, M., Abdel-Salam, E., Canto, T., Saquib, Q., Javed, SB., El-Sheikh, MA., Ak-Khedhairy, AA. 2017. Efficient and reproducible in vitro regeneration of Solanum lycopersicum and assessment genetic uniformity using flow cytometry and SPAR methods. Saudi Journal of Biological Sciences, vol 24, no 6.

Arulananthu, G., Bhat, SG., Ramesh, N. 2019. Callus induction and in-vitro regeneration of tomato (Lycopersicon esculentum Mill.). Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, vol 5, no 3


Bharti, N., Kapoor, B., Shaunak, I., Sharma, P., Sharma, R. 2018. Effect of sterilization treatments on in vitro culture establishment of tomato (Solanum lycopersicum L.). International Journal of Chemical Studies, vol 6, no 5.

Bunghez, IR., Raduly, M., Doncea, S., Aksahin, I., Ion, RM. 2011.Lycopene determination in tomatoes by different spectral techniques (UV-vis, FTIR and HPLC). Digest Journal of Nanomaterials and Biostructures, vol 6, no 3.

Chaudry, Z., Afroz, A., Rashid, H. 2007. Effect of variety and plant growth regulators on callus proliferation and regeneration response of three tomato cultivars (Lycopersicon esculentum). Pakistan Journal of Botany, vol 39, no 3.

Diengdoh, RV., Kumaria, S., Tandon, P., Das, MC. 2017. Asymbiotic germination and seed storage of Paphiopedilum insigne, an endangered lady’s slipper orchid. South African Jorunal of Botany, vol 112.

Dominguez, R., Gullon, P., Pateiro, M., Munekata, PES., Zhang, W., Lorenzo, JM. 2020. Tomato as potential source of natural additives for meat industry. A review. Antioxidants, vol 9, no 73.

Durosomo, HA., Popoola, AR., Afolabi, CG., Idehen, EO. 2014.Germination and in vitro regeneration response of local Nigerian tomato cultivar using different explant sources. Nigerian Journal of Biotechnology, vol 28.

Durrani, NS., Ahmad, D., Jalal, A., Rajab, H., Khan, MS. 2017. The effect of explant sources and growth regulators on callus induction and regeneration in different tomato cultivars. The Journal of Animal & Plant Sciences, vol 27, no 2.

Efferth, T. 2018. Biotechnology applications of plant callus cultures. Engineering, vol 5.

Farjaminezhad, R., Garoosi, G. 2019. New biological trends on cell and callus growth and azadirachtin production in Azadirachta indica. 3 Biotech, vol 9, no 8.

Gatahi, DM. 2020. Challenges and opportunities in tomato production chain and sustainable standards. International Journal of Horticultural Science and Technology, vol 7, no 3.

Gegi, GV., Williams, BC., Suja, RM. 2018. Micropropagation of an endangered terrestrial orchid Geodorum densiflorum (LAM.) Schltr. of Kanyakumari district, India. World Journal of Pharmaceutical Research, vol 7, no 7.

Hamidi, A. 2017. Budidaya tanaman tomat. Balai Pengkajian Teknologi Pertanian Aceh.

Hussein, S., Halmi, MIE., Ling, APK. 2016. Modelling the growth kinetics of callus cultures from the seedling of Jatropha curcas L. according to the modified gompertz model. Journal of Biochemistry, Microbiology and Biotechnology, vol 4, no 1.

Ikeuchi, M., Sugimoto, K., Iwase, A. 2013. Plant callus: mechanisms of induction and repression. Plant Cell, vol 25, no 9.

Indriani, R., Prihastanti, E., Budihastuti, R., Nurchayati, Y. 2020. Effect of subculture frequency toward growth and carotenoid content from tomato (Lycopersicon esculentum Mill.) callus. Jurnal Biodjati, vol 5, no 2.

Jatoi, SK., Sajid, GM., Sappal, M., Baloch, S., Qureshi, A., Anwar, A. 2001. Differential in vitro response of tomato hybrids against a multitude of hormonal regimes. Pakistan Journal of Biological Science, vol 1.

Kareem, TK., Karrar, AT. 2018. Biochemical changes of callus growth and lycopene pigment production from tomato (Lycopersicon esculentum Mill.) under drought stress. International Journal of Innovative Science and Technology, vol 3, no 2.

Kumar, A., Shilpa, Kaur, R. 2017. Establishment and regeneration of callus cultures in tomato (Solanum lycopersicum L.) from various explants. Annual Research & Review in Biology, vol 12, no 2.

Latifah, E., Krismawati, A., Saeri, M., Arifin, Z., Warsiati, B., Setyorini, D., Prahardini, PER., Subagio, H., Sihombing, D., Antarline, SS., Widaryano, E., Ariffin. 2021. Analysis of plant growth and yield in varietis of tomato (Solanum lycopersicum L.) grafted onto different eggplant rootstocks. International Journal of Agronomy, vol 2021.

Lu, RJ., Huang, PH., Sun, YF., Zhou, RM. 1997. Callus cotyledon and hypocotyl of tomato (L. esculentum). Acta Agricultural Shanghai, vol 13.

Madia, VN., Vita, DD., Ialongo, D., Tudino, V., Leo, AD., Scipione, L., Santo, RD., Costi, R., Messore, A. 2021. Recent advances in recovery of lycopene from tomato waste: a potent antioxidant with endless benefits. Molecules, vol 26, no 4495.

Mariyono, J. 2019. Microcredit and technology adoption. Agricultural Finance Review, vol 79, no 1.

Muthuvel, M., Jawahar, M., Rajendram, A., Jayabalan, N. 2005. Efficient protocol for organogenic callus induction and plant regeneration in tomato (Lycopersicon esculentum Mill.) Plant Cell Biotechnology and Molecular Biology, vol 1.

Oceania, C., Doni, T., Rikendra, L., Nongdam, P. 2015. Establishment of efficient in vitro culture and plantlet generation of tomato (Lycopersicon esculentum Mill.) and development of synthetic seeds. Journal of Plant Sciences, vol 10.

Orban, N., Boldizsar, I., Szucs, Z., Danos, B. 2008. Influence of different elicitors on the synthesis of anthraquinone derivatives in Rubia tinctorum L. cell suspension cultures. Dyes and Pigments, vol 77, no 1.

Pan, Y., Li, L., Xiao, S., Chen, Z., Sarsaiya, S., Zhang, S., Xu, D. 2020. Callus growth kinetics and accumulation of secondary metabolites of Bletilla striata Rchb.f. using a callus suspension culture. PLOS ONE, vol 15, no 2.

Rao, AV., Young, GL., Rao, LG. 2018. Lycopene and tomatoes in human nutrition and health. Boca Raton, FL: CRC Press.

Robertson, GH., Mahoney, NE., Goodman, N., Pavlath, AE. 1995. Regulation of lycopene formation in cell suspension culture of VFNT tomato (Lycopersicon esculentum) by CPTA, growth regulators, sucrose, and temperature. Journal of Experimental Botany, vol 46, no 6.

Saeed, W., Naseem, S., Gohar, D., Ali, Z. 2019. Efficient and reproducible somatic embryogenesis and micropropagation in tomato via novel structures – Rhizoid Tubers. PLOS ONE, vol 14, no 5.

Sakthivel, S., Manigandan, V. 2011. Tissue culture studies in tomato (Lycopersicon esculentum, PKM1) from cotyledonary leaf explants. International Journal of Chemical and Pharmaceutical Sciences, vol 2, no 3.

Salehi, B., Sharifi-Rad, R., Sharopov, F., Namiesnik, J., Roointan, A., Kamle, M., Kumar, P., Martins, N., Sharifi-Rad, J. 2019. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition, vol 62.

Sari. 2019. Induction and growth of endosperm callus of Rimau Gerga Lebong (RGL) citrus on several media composition Akta Agrosia, vol 11, no 2.

Sharma, P., Srivastava, DK. 2013. In vitro plant regeneration from leaf and petiole tissues of tomato (Solanum lycopersicum, cv. Solan Vajr). Journal of Cell and Tissue Research, vol 13, no 3.

Thompson, KA., Marshall, MR., Sims, CA., Wei, CI., Sargent, SA., Scott, JW. 2000. Cultivar, maturity, and heat treatment on lycopene content in tomatoes. Food Chemistry and Toxicology, vol 65, no 5.

Thurimurugan, D., Cholarajan, A., Raja, SSS., Vijayakumar, R. 2018. An introductory chapter: secondary metabolites. IntechOpen, 79766.




How to Cite

Goenawan, Y. A., Khodjojo, K. K., Hardjo, P. H., & Purwanto, M. G. M. (2022). LYCOPENE CONTENT IN SEVERAL AGES OF TOMATO CALLUS (Lycopersiconesculentum Mill. cv. Rampai). Agric, 34(1), 89–104.