PRODUCTION OF OIL PALM (Elaeis guineensis Jack) FLOWER BUNCHES IN ULTISOL ON APPLICATION OF BIOFERTILIZERS AND IN ORGANIC FERTILIZERS

  • Elis Kartika Program Studi Agroekoteknologi, Fakultas Pertanian, Universitas Jambi
  • Made Deviani Duaja Program Studi Agroekoteknologi, Fakultas Pertanian, Universitas Jambi
  • Gusniwati Gusniwat Program Studi Agroekoteknologi, Fakultas Pertanian, Universitas Jambi
Keywords: Arbuscular Mycorrhizal Fungi, sex ratio, sheath, AMF colonization

Abstract

One of the efforts to increase the production of oil palm flower bunches in ultisols is applying biofertilizers and inorganic fertilizers. Biofertilizers can reduce the use and adverse effects of inorganic fertilizers. Arbuscular Mycorrhizal Fungi (AMF) is one of the biofertilizers that can help plants absorb nutrients and increase plant resistance to various environmental stresses. This study aimed to examine the role of AMF (as biofertilizer) and inorganic fertilizers in increasing the production of oil palm flower bunches in Ultisol. This experiment is a factorial experiment using a Randomized Block Design. The first factor is the application of biofertilizers, which consists of two levels without biofertilizers (AMF) and with biofertilizers (AMF). The second factor is the dose of inorganic fertilizer, composed of 5 levels, no inorganic fertilizer, 25, 50, 75, and 100% recommended doses of inorganic fertilizer. The variables observed were the number of sheaths, the percentage of broken sheaths, the number of male flower bunches, the number of female flower bunches, the percentage of male and female flower bunches, sex ratio per plant, and AMF colonization. The results showed that AMF biofertilizer saved 25% of inorganic fertilizers and increased 29.33% of female flowers production. The highest production of oil palm flower bunches was obtained from the application of AMF biofertilizer and 75% of inorganic fertilizers (1.5 kg Urea, 1.1 kg SP-36, 1.2 kg MOP, 0.7 kg Kisserite per plant). Oil palm with AMF had a higher average sex ratio than plants without AMF biofertilizers. The average sex ratio in oil palm plants applying AMF biofertilizer and inorganic fertilizers ranged from 0.42 to 0.73.

Downloads

Download data is not yet available.

References

Allen EB. 1992. Development of mycorrhizal patches in a successional arid ecosystem, pp. 164-170. In D. J. Read, D. H. Lewis, A. H. Fitter and I. J. Alexander (Eds.). Mycorrhizas and Ecosystems. CAB International, UK.

Al-Karaki, G. N. 2013. Application of mycorrhizae in sustainable date palm cultivation. Emirates Journal of Food and Agriculture, 25(11), 854–862. https://doi.org/10.9755/ejfa.v25i11.16499

Augé, R. M. 2001.Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1), 3–42. https://doi.org/10.1007/s005720100097

Badan Pertanahan Nasional Provinsi Jambi. 2011. Tabel Luas dan Jenis Tanah di Provinsi Jambi.Dalam Data Pertanian Tanaman Pangan dan Hortikultura, Dinas Pertanian Tanaman Pangan dan Hortikultura.

Bano, S. A., & Ashfaq, D. 2013. Role of mycorrhiza to reduce heavy metal stress. Natural Science, 05(12), 16-20. https://doi.org/10.4236/ns.2013.512a003.

Baon, J.B., 1999. Rubber Seedling Response (Hevea Brasiliensis Mull. Arg) To The Application of Vesicular Arbuscular Mycorrhizae and Phosphorus Fertilizer in Polybag. Agrivita. 19 (3) : 121-124

Bhattacharjee, S. and Sharma, G. D. S. 2012. Effect of dual inoculation of arbuscular mycorrhiza and rhizobium on the chlorophyll, nitrogen and phosphorus contents of pigeon pea (Cajanus cajan L.). Advances in Microbiology, 02(04), 561–564. https://doi.org/10.4236/aim.2012.24072

Binu, N. K., Ashokan, P. K., & Balasundaran, M. 2015. Influence of different arbuscular mycorrhizal fungi and shade on growth of sandal (Santalum album) seedlings. Journal of Tropical
Forest Science, 27(2), 158-165.

Blanco-Canqui, H., & Schlegel, A. J. 2013. Implications of inorganic fertilization of irrigated corn on soil properties: lessons learned after 50 years. Journal of Environmental Quality, 42(3), 861-871. https://doi.org/10.2134/jeq2012.0451.

Cely, M. V. T., de Oliveira, A. G., de Freitas, V. F., de Luca, M. B., Barazetti, A. R., dos Santos, I. M. O., Gionco, B., Garcia, G. V., Prete, C. E. C., & Andrade, G. 2016. Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Frontiers in Microbiology, 7, 1-9. https://doi.org/10.3389/fmicb.2016.00720

Corley, R. H. V., & Tinker, P. B. 2016. The Oil Palm (5 ed.). Chichester, UK: Blackwell Science Ltd

Dave, S., Das, J., & Tarafdar, J. C. 2011.Effect of vesicular arbuscular mycorrhizae on growth and saponin accumulation in Chlorophytum borivilianum. Science Asia, 37(2), 165–169. https://doi.org/10.2306/scienceasia1513-1874.2011.37.165

Directorate General of Plantations. 2020. Indonesian plantation statistics 2017-2019. Oil Palm. Directorate General of Plantations, Jakarta.

Emamverdian, A., Ding, Y., Mokhberdoran, F. and Xie, Y. 2015. Heavy Metal Stress and Some Mechanisms of Plant Defense Response. The Scientific World Journal : 1-19. doi.org/10.1155/2015/756120.

Evelin, H., Devi, T. S., Gupta, S., & Kapoor, R. 2019. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00470.

França, A. C., De Freitas, A. F., Dos Santos, E. A., Grazziotti, P. H., & de Andrade Júnior, V. C. 2016. Mycorrhizal fungi increase coffee plants competitiveness against Bidens pilosa interference. Pesquisa Agropecuaria Tropical, 46(2), 132–139. https://doi.org/10.1590/1983-40632016v4639485

Giovannetti, M. & Mosse, B. 1980. An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. New Phytologist, 84, 489-500. http://dx.doi.org/10.1111/j.1469-8137.1980.tb04556.x

Gong, X., & Tian, D. Q. 2019. Study on the effect mechanism of Arbuscular Mycorrhiza on the absorption of heavy metal elements in soil by plants. IOP Conference Series: Earth and Environmental Science, 267(5). https://doi.org/10.1088/1755-1315/267/5/052064

Haque, S. I., & Matsubara, Y-ichi. 2018. Salinity tolerance and sodium localization in mycorrhizal strawberry plants. Communications in Soil Science and Plant Analysis, 49(22), 2782–2792. https://doi.org/10.1080/00103624.2018.1538376

Harahap, I. Y., Sumaryanto, S., Hidayat, T. C., Fauzi, W. R., & Pangaribuan, Y. 2017. Production of Oil Palm Sex Inflorescense and Its Response on the Treatment of Plant Exogenous Hormone Treatment Under Drought Condition. Jurnal Penelitian Kelapa Sawit, 25(1), 31-46. https://doi.org/10.22302/iopri.jur.jpks.v25i1.23

Hindersah, R., Syntianis, A. R., Setiawan, A., & Devnita, R. 2021. Role of biofertilizer to increase caysim yield, n and p residues and their plant uptake. Agric. 33(2), 93–102.

Kartika, E., Duaja, M. D., & Gusniwati. 2016. The Growth of Immature Oil Palm Plant (Phase 1) to Indigenous Mycorrhizal and Organic Fertilizer Doses Application on Marginal Land. Biospecies, 9(1), 29–37.

Kartika, E., Duaja, M. D., & Gusniwati, G. 2019. Oil Palm (Elaeis guineensis) Responses to Indigenous Mycorrhizae and Cow Manure in Ultisol. Planta Tropika: Journal of Agro Science, 7(2), 103-109. https://doi.org/10.18196/pt.2019.099.103-109

Kartika, E., Lizawati, L., & Hamzah. 2012. Isolation, Identification and Purification of Arbuscular Mycorrhiza Fungi (AMF) from Coal Post Mining Soil. Bioplantae, 1(4), 225–235.

Kartika E., Lizawati, L. Hamzah. 2018. Jatropha curcas L. Responses to Indigenous Mycorrhizae and P Fertilizers at Coal Post-Mining Land. Biospesies, 11(1), 10-18.

Kasryno, F. and H. Soeparno. 2012. Dryland agriculture as a solution to achieve future food independence (in Indonesian). In: Prospects of dryland agriculture to support food security. Jakarta: Indonesian Agency for Agricultural Research and Development. pp. 11-34

Khryanin, V. N. 2002.Role of phytohormones in sex differentiation in plants. Russian Journal of Plant Physiology, 49(4), 545–551. https://doi.org/10.1023/A:1016328513153.

Kormanik, P.P. and A.C. Mc. Graw. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant root. In NC Schenck. (ed.).Methods and Principles of Mycorrhizae Research. The American Phytop. Soc. 46 : 37-45.

Kothari SK, Marschner H, George E. 1990. Effect of VA mycorrhizal fungi and rhizosphere microorganism on root and shoot morphology, growth, and water relations of maize. New Phytol. 116:303-311. https://doi.org/10.1111/j.1469-8137.1990.tb04718.x

Krishnamoorthy, R., Chang-Gi Kim, P. Subramanian, Ki-Yoon Kim, G. Selvakumar, Sa, TM. 2015.Arbuscular Mycorrhizal Fungi community structure,
abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration.PLoS ONE, 10(6), 1-15. https://doi.org/10.1371/journal.pone.0128784.

Latef, A. A. H. A., Hashem, A., Rasool, S., Abd-Allah, E. F., Alqarawi, A. A., Egamberdieva, D., Jan, S., Anjum, N. A., & Ahmad, P. 2016. Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review. Journal of Plant Biology, 59(5), 407–426. https://doi.org/10.1007/s12374-016-0237-7

Leifheit. E.F.. Stavro, D. Veresoglou. Lehmann, A., Morris, E. K. and Rillig, M. C. 2014.Multiple factors influence the role of Arbuscular Mycorrhizal Fungi in soil aggregation-a metaanalysis. Plant Soil 374:523–537.

Lu, N., Zhou, X., Cui, M., Yu, M., Zhou, J., Qin, Y., & Li, Y. 2015. Colonization with arbuscular mycorrhizal fungi promotes the growth of morus alba l. seedlings under greenhouse conditions. Forests, 6(3), 734-747. https://doi.org/10.3390/f6030734.

Ortas, I., & Akpinar, Ç. 2011. Response of maize genotypes to several mycorrhizal inoculums in terms of plant growth, nutrient uptake and spore production. Journal of Plant Nutrition, 34(7), 970-987. https://doi.org/10.1080/01904167.2011.555580.

Phosri, C., Rodriguez, A., Sanders, I. R., & Jeffries, P. 2010.The role of mycorrhizas in more sustainable oil palm cultivation. Agriculture, Ecosystems and Environment,135(3), 187–193. https://doi.org/10.1016/j.agee.2009.09.006.

Revanna, A., Bagyaraj, D. J., & Mohan Raju, B. 2018. Evaluation of different arbuscular mycorrhizal fungi for selecting the best for inoculating soybean cultivars MAUS 2 and MAUS 212. Pertanika Journal of Tropical Agricultural Science, 41(4), 1587–1598.

Santander, C., Aroca, R., Ruiz-Lozano, J. M., Olave, J., Cartes, P., Borie, F., & Cornejo, P. 2017.Arbuscular mycorrhiza effects on
plant performance under osmotic stress. Mycorrhiza, 27(7), 639–657. https://doi.org/10.1007/s00572-017-0784-x

Sidhu, M., Kong, C., Sinuraya, Z., Kurniawan, M., & Hasyim, A. 2009. Resumption of manuring and its impact on the nutrient status, growth
and yield of unfertilised oil palm. The Planter, 85(1004), 675-689.

Simanjuntak, D., Fahridayanti, & Susanto, A. 2013. Efficacy of mycorrhizae and trichoderma as a biological control of basal stem rot disease (ganoderma) and as a promotor of oil palm seedling growth. Widyariset, 16(2), 233–242.

Simanungkalit, R. D. M. 2001. Application of Biofertilizer and Chemical Fertilizer: An Integrated Approach. Buletin Agrobio, 4(2), 56-61.

Sitepu, A. F., & Yenni, Y. 2021. Mengenal fenomena feminin pada kelapa sawit (Elaeis guineensis Jacq .). Warta PPKS, 26(3), 154–161.

Smith, S. E., Facelli, E., Pope, S., & Smith, F. A. 2010. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil, 326(1), 3-20. https://doi.org/10.1007/s11104-009-9981-5

Suhardi dan Sumardi. 1999. Peranan Mikoriza dalam Pengelolaan Hutan yang Berkelanjutan. Makalah pada Simposium dan Seminar Ilmiah Perhimpunan Fitologi Indonesia. Purwokerto.

Suparno, A., Prabawardani, S., Yahya, S., & Taroreh, N. A. 2015. Inoculation of arbuscular mycorrhizal fungi increase the growth of cocoa and coffee seedling applied with ayamaru phosphate rock. Journal of Agricultural Science, 7(5). https://doi.org/10.5539/jas.v7n5p199

Suryanto, T., & Panjaitan, H. Q. 2021. Pengaruh Kombinasi Fungi Mikoriza Arbuskular dengan Kompos Kotoran Sapi terhadap Pertumbuhan dan
Kadar N, P, K Kelapa Sawit Menghasilkan. Jurnal Citra Widya Edukasi, 13(2), 167–172.

Susanto, A., Prasetyo, A. E., & Priwiratama, H. 2020. Hubungan Kesehatan Tanaman Terhadap Penyerbukan Kelapa Sawit. Warta PPKS, 25(2), 92–100.

Sylvia, D. M. and Chellemi, O. C. 2001. Interactions among root-inhabiting fungi and their implications for biological control of root pathogens. Advances in Agronomy, 73, 1–33. https://doi.org/10.1016/s0065-2113(01)73003-9

Watts-Williams, S. J., Turney, T. W., Patti, A. F., & Cavagnaro, T. R. 2014. Uptake of zinc and phosphorus by plants is affected by zinc fertiliser material and arbuscular mycorrhizas. Plant and Soil, 376(1), 165–175. https://doi.org/10.1007/s11104-013-1967-7.

Zhu, X. C., Song, F. B., Liu, S. Q., Liu, T. D., & Zhou, X. 2012. Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant, Soil and Environment, 58(4), 186–191. https://doi.org/10.17221/23/2011-pse

Zou, Y. N., Wu, Q. S., Huang, Y. M., Ni, Q. D., & He, X. H. 2013. Mycorrhizalmediated lower proline accumulation in Poncirus trifoliata under water deficit derives from the integration of inhibition of proline synthesis with increase of proline degradation. PLoS ONE, 8(11), 1-8. https://doi.org/10.1371/journal.pone.0080568.
Published
2022-12-16
How to Cite
Kartika, E., Duaja, M., & Gusniwat, G. (2022). PRODUCTION OF OIL PALM (Elaeis guineensis Jack) FLOWER BUNCHES IN ULTISOL ON APPLICATION OF BIOFERTILIZERS AND IN ORGANIC FERTILIZERS. Agric, 34(2), 155-170. https://doi.org/10.24246/agric.2022.v34.i2.p155-170
Section
Articles