Prediksi kelulusan tepat waktu mahasiswa untuk pemantauan program studi menggunakan metode data mining
DOI:
https://doi.org/10.24246/aiti.v21i2.168-182Keywords:
k-Nearest Neighbors, Graduation, MonitoringAbstract
This research will conduct data exploration (data mining) using student data in the undergraduate study program (S1) at PQR University for the 2022/2023 academic year. The study aims to predict students' on-time graduation according to the monitoring requirements of the Accreditation Body (students' timely study period is four years). The test data parameters use student master data, student transaction data, and data on the graduation status of 2019 class students in the 2023/2024 academic year. Data testing and training were conducted using the k-Nearest Neighbors algorithm method. The data training obtained 75% accuracy, 75% precision, and 0% recall value. The data testing results obtained 87.76% accuracy, 89.19% precision, and 83.33% recall value. The data training and data testing results show a high percentage of not passing the monitoring. University leaders can take an early step based on the prediction results to make academic policies to increase the number of on-time graduates.
Downloads
Metrics
References
F. Rahutomo, C. Rahmad, and M. Bisri Musthafa, “Desain Skema Data Warehouse PDDIKTI sebagai Pendukung Keputusan Perguruan Tinggi,” Jurnal Inovtek Polbeng Seri Informatika, vol. 4, no. 1, pp. 90–100, Jun. 2019, doi: 10.35314/ISI.V4I1.980. DOI: https://doi.org/10.35314/isi.v4i1.980
“Permendikbud No. 5 Tahun 2020 Tentang Akreditasi Program Studi Dan Perguruan Tinggi.” [Online]. Available: https://peraturan.go.id/id/permendikbud-no-5-tahun-2020
J. Dongga, A. Sarungallo, N. Koru, and G. Lante, “Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang (Studi Kasus: Toko Swapen Jaya Manokwari),” G-Tech: Jurnal Teknologi Terapan, vol. 7, no. 1, pp. 119–126, Jan. 2023, doi: 10.33379/GTECH.V7I1.1938. DOI: https://doi.org/10.33379/gtech.v7i1.1938
E. Devia, “Penerapan Decision Tree Dengan Algoritma C4.5 Untuk Menentukan Rekomendasi Kenaikan Jabatan Karyawan,” Jurnal Information System, vol. 3, no. 1, pp. 28–37, May 2023, doi: 10.61488/JIS.V3I1.257. DOI: https://doi.org/10.61488/jis.v3i1.257
S. Yunianita, N. Setiani, and S. Mulyati, “Prediksi Ketepatan Masa Studi Mahasiswa dengan Algoritma Pohon Keputusan C45,” Seminar Nasional Aplikasi Teknologi Informasi (SNATI), pp. 11–2018, Aug. 2018, [Online]. Available: https://journal.uii.ac.id/Snati/article/view/11108
D. Alverina, A. R. Chrismanto, and R. G. Santosa, “Perbandingan Algoritma C4.5 dan CART dalam Memprediksi Kategori Indeks Prestasi Mahasiswa,” Jurnal Teknologi dan Sistem Komputer, vol. 6, no. 2, pp. 76–83, Apr. 2018, doi: 10.14710/JTSISKOM.6.2.2018.76-83. DOI: https://doi.org/10.14710/jtsiskom.6.2.2018.76-83
M. Bisri Musthafa et al., “Pemanfaatan Data PDDIKTI sebagai Pendukung Keputusan Manajemen Perguruan Tinggi,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 3, pp. 555–564, May 2020, doi: 10.25126/JTIIK.2020722585. DOI: https://doi.org/10.25126/jtiik.2020722585
M. Mardiansa, H. L. Sari, and P. Prahasti, “Penerapan Data Mining Untuk Mengetahui Minat Siswa Pada Pelajaran IPA Mengunakan Metode K-Means Clustering,” Jurnal Multidisiplin Dehasen (MUDE), vol. 2, no. 4, pp. 693-702–693–702, Oct. 2023, doi: 10.37676/MUDE.V2I4.4749. DOI: https://doi.org/10.37676/mude.v2i4.4749
D. Prasetyawan and R. Gatra, “Algoritma K-Nearest Neighbor untuk Memprediksi Prestasi Mahasiswa Berdasarkan Latar Belakang Pendidikan dan Ekonomi,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 7, no. 1, pp. 56–67, Jan. 2022, doi: 10.14421/jiska.2022.7.1.56-67. DOI: https://doi.org/10.14421/jiska.2022.7.1.56-67
K. Yahya and W. P. Hidayanti, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape (Rokok Elektrik) pada Lombok Vape On,” Infotek: Jurnal Informatika dan Teknologi, vol. 3, no. 2, pp. 104–114, Jul. 2020, doi: 10.29408/JIT.V3I2.2279. DOI: https://doi.org/10.29408/jit.v3i2.2279
“UU No. 12 Tahun 2012 Tentang Pendidikan Tinggi.” [Online]. Available: https://peraturan.go.id/id/uu-no-12-tahun-2012
I. Gede and B. Subawa, “Prediksi Kelulusan Mahasiswa Menggunakan Teorema Bayes (Studi Kasus Di Universitas Pendidikan Ganesha),” Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, vol. 8, no. 3, pp. 227–236, 2019, doi: 10.23887/JANAPATI.V8I3.19395.
J. Han, M. Kamber, and J. Pei, “4 - Data Warehousing and Online Analytical Processing,” in Data Mining (Third Edition), J. Han, M. Kamber, and J. Pei, Eds., Boston: Morgan Kaufmann, 2012, pp. 125–185. doi: https://doi.org/10.1016/B978-0-12-381479-1.00004-6. DOI: https://doi.org/10.1016/B978-0-12-381479-1.00004-6
E. N. Ekwonwune, C. I. Ubochi, A. E. Duroha, E. N. Ekwonwune, C. I. Ubochi, and A. E. Duroha, “Data Mining as a Technique for Healthcare Approach,” International Journal of Communications, Network and System Sciences, vol. 15, no. 9, pp. 149–165, Nov. 2022, doi: 10.4236/IJCNS.2022.159011. DOI: https://doi.org/10.4236/ijcns.2022.159011
S. Aisyah, S. Wahyuningsih, F. Deny, and T. Amijaya, “Peramalan Jumlah Titik Panas Provinsi Kalimantan Timur Menggunakan Metode Radial Basis Function Neural Network,” Jambura Journal of Probability and Statistics, vol. 2, no. 2, pp. 64–74, Nov. 2021, doi: 10.34312/JJPS.V2I2.10292. DOI: https://doi.org/10.34312/jjps.v2i2.10292
M. Ridwan, H. Suyono, and M. Sarosa, “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,” Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems), vol. 7, no. 1, pp. 59–64, 2013, doi: 10.21776/JEECCIS.V7I1.204.
R. Situmorang, W. I. Rahayu, R. Nuraini, and S. Fathonah, “Model Algoritma K-Nearest Neighbor (K-NN) Dan Naïve Bayes Untuk Prediksi Kelulusan Mahasiswa,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 1, pp. 250–254, Feb. 2023, doi: 10.36040/JATI.V7I1.6342. DOI: https://doi.org/10.36040/jati.v7i1.6342
W. A. Kurniawan, “Sistem Pendukung Keputusan Pencarian Universitas di Malang Menggunakan Weight Product dengan Pembobotan Weighted Sum Model,” Jurnal Ilmiah Informatika, vol. 4, no. 2, pp. 103–110, Dec. 2019, doi: 10.35316/JIMI.V4I2.554. DOI: https://doi.org/10.35316/jimi.v4i2.554
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 AITI
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in AITI: Jurnal Teknologi Informasi is licensed under a Creative Commons Attribution 4.0 International License.