Distribution of Water Phantom BNCT Kartini Research Reactor Based Using PHITS
DOI:
https://doi.org/10.24246/ijpna.v3i2.43-48Keywords:
BNCT, Kartini Research Reactor, Dose, PHITSAbstract
The purpose of this research was to calculate the radiation dose on BNCT. Boron Neutron Capture Therapy (BNCT) is a cancer therapy which utilizes thermal neutron-capture reactions by boron-10 isotopes that produce alpha particles and lithium nuclei. The advantage of BNCT is that radiation effects can be limited to tumor cells. The dose of radiation on BNCT depends heavily on the distribution of boron and the neutron free region. The calculation method involves alpha and lithium particles of reactions having high Linear Energy Transfer (LET). By replacing the target of using water phantom that contains heavy water and covered by acrylic glass measuring 30 cm x 30 cm x 30 cm, the dose is calculated using PHITS-based applications. By comparing the simulation results between boron and phantom water or phantom without boron then the conclusion is the absorbed dose of phantom water containing boron is larger than phantom water without boron.
Downloads
References
Akan, Z. (2015). Boron Neutron Capture Therapy for Breast Cancer. https://doi.org/10.1016/j
American Cancer Society, I. (2016). Cancer Facts & Figures 2016.
IAEA. (2014). PACT :Together Against Cancer.
Kageji, T., Nagahiro, S., Mizobuchi, Y., Matsuzaki, K., Nakagawa, Y., & Kumada, H. (2014). Boron neutron capture therapy (BNCT) for newly-diagnosed glioblastoma: Comparison of clinical results obtained with BNCT and conventional treatment. The Journal of Medical Investigation, 61(3.4), 254–263. https://doi.org/10.2152/jmi.61.254
Kasesaz, Y., Khalafi, H., & Rahmani, F. (2014). Design of an epithermal neutron beam for BNCT in thermal column of Tehran research reactor. Annals of Nuclear Energy, 68, 234–238. https://doi.org/10.1016/j.anucene.2014.01.014
Miyatake, S. I., Kawabata, S., Hiramatsu, R., Furuse, M., Kuroiwa, T., & Suzuki, M. (2014). Boron neutron capture therapy with bevacizumab may prolong the survival of recurrent malignant glioma patients: Four cases. Radiation Oncology, 9(1), 1–6. https://doi.org/10.1186/1748-717X-9-6
National Cancer Institute. (2016). Types of Cancer Treatment. Retrieved November 30, 2018, from https://www.cancer.gov/about-cancer/treatment/types
Park, J.-M., Lee, H.-J., Yoo, J. H., Ko, W. J., Cho, J. Y., & Hahm, K. B. (2015). Overview of gastrointestinal cancer prevention in Asia. Best Practice & Research Clinical Gastroenterology, 29(6), 855–867. https://doi.org/10.1016/J.BPG.2015.09.008
Sauerwein, W. (1993). Principles and history of neutron capture therapy. Strahlentherapie Und Onkologie : Organ Der Deutschen Rontgengesellschaft ... [et Al], 169(1), 1–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8434333
Savolainen, S., Kortesniemi, M., Timonen, M., Reijonen, V., Kuusela, L., Uusi-Simola, J., … Auterinen, I. (2013). Boron neutron capture therapy (BNCT) in Finland: Technological and physical prospects after 20 years of experiences. Physica Medica, 29(3), 233–248. https://doi.org/10.1016/j.ejmp.2012.04.008
Schmitz, T., Bassler, N., Blaickner, M., Ziegner, M., Hsiao, M. C., Liu, Y. H., … Hampel, G. (2014). The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron fields. Medical Physics, 42(1), 400–411. https://doi.org/10.1118/1.4901299
Triviño, S., Vedelago, J., Cantargi, F., Keil, W., Figueroa, R., Mattea, F., … Valente, M. (2016). Neutron dose estimation in a zero power nuclear reactor. Radiation Physics and Chemistry, 127(127), 62–67. https://doi.org/10.1016/j.radphyschem.2016.06.011
WHO. (2018). Cancer. Retrieved November 30, 2018, from https://www.who.int/cancer/en/
Downloads
Published
How to Cite
Issue
Section
License
Indonesian Journal of Physics and Nuclear Applications is licensed under a Creative Commons Attribution 4.0 International License.