NDT TESTING USING NEUTRON RADIOGRAPHY METHOD ON PURE NICKEL COLLIMATOR FOR BNCT APPLICATION

  • Ricky Fajar Adiputra Universitas Sanata Dharma
Keywords: BNCT, MNCP5, Neutron Radiography, nickel

Abstract

Boron neutron capture therapy (BNCT) is a targeted radiotherapy technique developed to treat patients with selected malignant tumors without any side effect. Colimator is one of important component used  in BNCT. In this research collimator made by centrifugal casting processes which can cause any defect. Purpose of the research is to detect any defect in collimator made by 99% pure nickel with Neutron Radiography and processing with MNCP5 for imaging the defect. The expected result of this research is displayed an image of defect caused by centrifugal casting in collimator.

Downloads

Download data is not yet available.

References

[1] Diana Sarfatia, et al., Measuring cancer in Indigenous populations. Annals of Epidemiology (2018), doi: 10.1016/j.annepidem.2018.02.005.

[2] Si-Yong Qin, et al., Combinational strategy for high-performance cancerchemotherapy. JBMT 18613, 10.1016/j.biomaterials.2018.04.027

[3] Elfahmi, Herman J. Woerdenbag, and Oliver Kayser. Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use. J Herbal Med (2014), http://dx.doi.org/10.1016/j.hermed.2014.01.002
[4] Charles A Maitz, et al., Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple. (2017). CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1936-5233/17 http://dx.doi.org/10.1016/j.tranon.2017.05.003

[5] Natsuko Kondo, et al., Detection of H2AX foci in mouse normal brain and brain tumor after boron neutron capture therapy. (2014). Greater Poland Cancer Centre. Published by Elsevier Sp. z o.o. All rights reserved. http://dx.doi.org/10.1016/j.rpor.2014.10.005 1507-1367/
[6] Jacob G. Fantidis and G. Nicolaou. Optimization of Beam Shaping Assembly design for Boron Neutron Capture Therapy based on a transportable proton accelerator. (2017). e CC BY-NC-ND, license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

[7] A.M. Hassanein, et al., An optimized epithermal BNCT beam design for research reactors. (2017). https://doi.org/10.1016/j.pnucene.2018.03.018.

[8] Jean-Briac le Graverend, et al., Ex-situ X-ray Tomography Characterization of Porosity During High-Temperature Creep in a Nibased Single-Crystal Superalloy: Toward Understanding What is Damage. (2017). https://doi.org/10.1016/j.msea.2017.03.083

[9] Xuejian Ding, et al., Effect of damage rate on the kinetics of void nucleation and growth by phase field modeling for materials under irradiations. (2016). https://doi.org/10.1016/j.jnucmat.2016.08.008

[10] M. Ovaska and M.J. Alava . Joint modeling of thermal creep and radiation damage interaction with gas permeability and release dynamics: The role of percolation. (2015). https://doi.org/10.1016/j.physa.2015.05.068

[11] Zhang J, Drinkwater BW, Wilcox PD. Efficient immersion imaging of components with nonplanar surfaces. IEEE Trans Ultrason Ferroelectrics Freq Contr 2014;61: 1284–95. https://doi.org/10.1109/TUFFC.2014.3035.

[12] C. Salt, A.J. Lennox, M. Takagaki, J.A. Maguire, N.S. Hosmane, Boron and gadolinium neutron capture therapy, Russ. Chem. Bull. 53(9) (2004) 1871-1888.

[13] Hitomi Tani, et al., Correlation of 18F-BPA and 18F-FDG uptake in head and neck cancers. (2014). https://doi.org/10.1016/j.radonc.2014.11.001.
[14] Isolda Romero-Canelon, et al., Arene ruthenium dithiolatoe carborane complexes for boron neutron capture therapy (BNCT). (2015). https://doi.org/10.1016/j.jorganchem.2015.05.011

[15] Y. Kasesaz, et al., BNCT project at Tehran Research Reactor: Current and prospective plans. (2016). http://dx.doi.org/10.1016/j.pnucene.2016.04.010

[16] Xiaowen Zhu , et al., 2.5 MeV CW 4-vane RFQ accelerator design for BNCT applications. (2017). https://doi.org/10.1016/j.nima.2017.11.042
[17] Agrawal, Y.K., Menon, S.K., Parekh, P.C., 2001. Mixed-ligand stability constants of divalent metal ions with glycine and hydroxamic acids. Indian J. Chem.– Sect. A Inorg. Phys. Theor. Anal. Chem. 40 (12), 1313–1318.
[18] Chukanov, N.V., 2014. Infrared Spectra of Mineral Species: Extended Library, vol I Springer.
[19] Codd, R., 2008. Traversing the coordination chemistry and chemical biology of hydroxamic acids. Coord. Chem. Rev. 252, 1387–1408.

[20] Ryoichi Taniguchi, Norio Ito. A Trial to Natural Neutron Radiography. (2015). doi: 10.1016/j.phpro.2015.07.052

[21] Rafhayudi Jamro, et al., Monte Carlo simulation for designing collimator of the neutron radiography facility in Malaysia. (2017). doi: 10.1016/j.phpro.2017.06.04

[22] Sandeep Kumar Dwivedia, Manish Vishwakarmab, Prof.Akhilesh Sonic: Advances and Researches on Non Destructive Testing: A Review. (2017)

[23] Ismail Shaaban. Conceptual design of a thermal neutron radiography facility in the cyclotron 30 LC using the MCNPX code. (2017)

[24] E.Lehman, D. Manes, A. Kaestner, C. Grunzweig. Recent application of neutron imaging method. (2016). https://doi.org/10.1016/j.phpro.2017.06.055

[25] Montaser Tharwat, Nader Mohamed, T. Mongy. Image Enchancement Using MCNP5 code and MATLAB in Neutron Radiography. (2014). http://dx.doi.org/10.1016/j.apradiso.2014.02.004
[26] E. Lehmann, et al., Methodical progress in neutron imaging at PSI. (2017). http://creativecommons.org/licenses/by-nc-nd/4.0/

[27] Sutiyoko, et al., Neutron radiography and tomography investigations on the porosity of the as-cas titanium femoral stem. (2017). doi:10.1088/1757-899X/172/1/012057

[28] Robert Nshimirimana, Mabuti Radebe, Frikkie de Beer. Precision of Porosity Calculation from “Material Stopping Power” Using Neutron Radiography. (2017). (http://creativecommons.org/licenses/by-nc-nd/4.0/)

[29] Mayank Shukla, et al., Development of neutron imaging beamline for NDT applications at Dhruva reactor, India. (2018). https://doi.org/10.1016/j.nima.2018.01.097

[30] F.C. de Beer, et.al, Upgrading the Neutron Radiography Facility in South Africa (SANRAD): Concrete Shielding Design Characteristics. (2015). doi: 10.1016/j.phpro.2015.07.017
Published
2020-02-29
How to Cite
Adiputra, R. (2020). NDT TESTING USING NEUTRON RADIOGRAPHY METHOD ON PURE NICKEL COLLIMATOR FOR BNCT APPLICATION. Indonesian Journal of Physics and Nuclear Applications, 5(1), 1-8. https://doi.org/10.24246/ijpna.v5i1.1-8
Section
Articles