Sistem optimasi pendistribusian bahan makanan dan snack dengan algoritma Ant Colony Optimization (ACO)

  • Lutfi Erik Prasetyo Universitas Widyama Malang
  • Istiadi Istiadi Universitas Widyagama Malang
  • Fitri Marisa Universitas Widyagama Malang
Keywords: Ant Colony Optimization (ACO) Algorithm, Distribution, Travelling Salesman Problem (TSP)

Abstract

Distribution activities are activities of distributing goods and services made from producers to consumers so that news is famous. That's what the company CV. Landahur, this company is responsible for implementing food and snack ingredients from the principal to the customer. This is done so that it makes it easier for customers and producers to buy and sell. In the distribution process, a salesman will make visits to customers with the aim of selling these food ingredients and snacks, but with so many customers who need to be visited, the best route recommendation is recommended. In this study, using the Ant Colony Optimization (ACO) algorithm. ACO is used because it is able to show the best route with parameters. In this study, 2 trials were carried out, the first trial using 5 data obtained a distance of 20.3 km and the second trial using 10 data obtained the best route distance of 22.96 km with the parameter that the number of ants is 3, 2iterations, α = 1, β = 0 , 5, ρ = 0.5194, the initial Pheromone = 0.1. With this system, it is hoped that it can help sellers get the best route information precisely and accurately.

Downloads

Download data is not yet available.

References

[1] Yumalia, A. (2017) ‘Minimasi Biaya Distribusi Dengan Menggunakan Metode Traveling Salesman Problem ( TSP )’, Jurnal UMJ, (November 2017), pp. 1–8. Available at: jurnal.umj.ac.id/index.php/semnastek.
[2] Yuliastuti, G. E., Mahmudy, W. F. and Rizki, A. M. (2017) ‘Penanganan Fuzzy Time Window pada Travelling Salesman Problem (TSP) dengan Penerapan Algoritma Genetika’, Matics, 9(1), p. 38. doi: 10.18860/mat.v9i1.4072.
[3] Anshory, Z. (2020) ‘Penerapan Algoritma Ant Colony Optimization Pada Aplikasi Pemandu Wisata Provinsi Sumatera Utara Berbasis Android’, 1(2), pp. 61–67.Available at: https://ejurnal.seminard.com/index.php/josyc/article/view/106
[4] Nurlaelasari, E., Supriyadi, S. and Lenggana, U. T. (2018) ‘Penerapan Algoritma Ant Colony Optimization Menentukan Nilai Optimal Dalam Memilih Objek Wisata Berbasis Android’, Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 9(1), pp. 287–298. doi: 10.24176/simet.v9i1.1914.
[5] Purnomo, R. G., Maylawati, D. S., & Alam, C. N. (2018). Implementas Algoritma Cheapest Insertion Heuristic (CIH) dalam Penyelesaian Travelling Salesman Problem (TSP) . JOIN (Jurnal Online Informatika) .
[6] Soesanto, O., Affandi, P. and Astuti, N. D. (2019) ‘Algoritma Ant Colony Optimization pada Quadratic Assignment Problem’, Jambura Journal of Mathematics, 1(2), pp. 104–110. doi: 10.34312/jjom.v1i2.2353
[7] Sihaloho, I. and Cholissodin, I. (2019) ‘Optimasi Travelling Salesman Problem Pada Angkutan Sekolah Menggunakan Algoritme Genetika ( Studi Kasus : Sekolah MI Salafiyah Kasim Blitar )’, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 3(1), pp. 454–461.
Published
2021-10-11
How to Cite
Prasetyo, L., Istiadi, I., & Marisa, F. (2021). Sistem optimasi pendistribusian bahan makanan dan snack dengan algoritma Ant Colony Optimization (ACO). AITI, 18(1), 88-96. https://doi.org/10.24246/aiti.v18i1.88-96
Section
Articles