Sistem penilaian kinerja pegawai di kantor Kementerian Agama Provinsi Papua Barat menggunakan metode Self Organizing Map (SOM)

Authors

DOI:

https://doi.org/10.24246/aiti.v21i1.96-116

Keywords:

Clustering, SOM Method, R Studio

Abstract

A government agency requires employees who have competence and good performance. Various factors affect performance between the abilities of other individuals and the agency environment, including the office of the Ministry of Religion in West Papua Province. However, the performance assessment process still needs to be better for making assessment decisions and is still subjectively based. Those things affect the employee's assessments. For example, employees cannot complete work according to predetermined targets and must be more careful in carrying out the work. So, to facilitate this assessment, an accurate calculation application is needed. A Self Organizing Map (SOM) is used to sort data in a group with similar data that are close to each other. Using the R (programming language) and R studio as the required application platform, we can calculate values and form them into three clusters: very good, quite good, and poor. Then, from the calculation results, 55 employees, with a percentage of 42%, match cluster with quite good performance, 29 employees, with a percentage of 22%, are in cluster with poor performance, and 48 employees, with a percentage of 36%, are in cluster with very good performance.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

D. Suhendro, P. Studi, and S. Informasi, “Penerapan Algoritma K-Means dalam Proses Clustering Penilaian Kinerja Aparatur Sipil Negera di Sekretariat DPRD Pematangsiantar,” vol. 6, pp. 47–60, 2021.

A. Natalis and Y. Nataliani, “Pemanfaatan k-Means Clustering dan Analytic Hierarchy Process terhadap Penilaian Prestasi Kerja Pegawai,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 1, pp. 88–99, 2022, doi: 10.28932/jutisi.v8i1.4243.

A. Natalis and Y. Nataliani, “Pemanfaatan k-Means Clustering dan Analytic Hierarchy Process terhadap Penilaian Prestasi Kerja Pegawai,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 1, pp. 88–99, 2022, doi: 10.28932/jutisi.v8i1.4243.

R. Umar, A. Fadlil, R. R. Az-zahra, and J. P. Soepomo, “Analisis Klaster Berdasarkan Indikator Kesejahteraan Rakyat Menggunakan Metode Self Organizing Map,” pp. 203–210, 2022.

M. Aziz, “Implementation of Self Organizing MapImplementasi Algoritma Self Organizing Map untuk Identifikasi Pola Pengelompokan Tingkat Kesejahteraan Keluarga Kabupaten Siak,” vol. 2, no. 2, pp. 82–92, 2022.

S. dkk Kania, “Program Aplikasi Pengelompokan Objek dengan Metode Self Oorganizing Map,” pp. 17–29, 2019.

S. N. Amida and T. Kristiana, “Sistem Pendukung Keputusan Penilaian Kinerja Pegawai Dengan Menggunakan Metode Topsis,” JSAI (Journal Scientific and Applied Informatics), vol. 2, no. 3, pp. 193–201, 2019, doi: 10.36085/jsai.v2i3.415.

H. U. Sugiyono, “Populasi dan Teknik Sampel,” Universitas Islam Negeri Alauddin Makassar, no. June, pp. 2–25, 2021.

N. F. Amin, S. Garancang, and K. Abunawas, “Konsep Umum Populasi dan Sampel dalam Penelitian,” Jurnal Pilar, vol. 14, no. 1, pp. 15–31, 2023.

C. Chusminah and R. A. Haryati, “Analisis Penilaian Kinerja Pegawai Pada Bagian Kepegawaian dan Umum Direktorat Jenderal P2P Kementerian Kesehatan,” Widya Cipta - Jurnal Sekretari dan Manajemen, vol. 3, no. 1, pp. 61–70, 2019, doi: 10.31294/widyacipta.v3i1.5203.

D. N. Firmansyah, S. Adinugroho, and B. Rahayudi, “Kesejahteraan sosial menggunakan Algoritme Self-Organizing Maps dengan perbaikan Missing Value K-Nearest Neighbors,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 7, pp. 7205–7213, 2019.

D. A. Rahmah, “Analisis Klaster Berdasarkan Indikator Kesejahteraan Rakyat Menggunakan Metode Self Organizing Maps (Som),” pp. 203–210, 2022.

Y. Pradana, “Analisa Tunjangan Kinerja PNS menggunakan Metode SOM (Self Organizing Map)”, Skripsi, 2019.

R. Nuraini, “Implementasi Jaringan Syaraf Tiruan Menggunakan Metode Self-Organizing Map Pada Klasifikasi Citra Jenis Ikan Kakap,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 3, pp. 1325–1333, 2022, doi: 10.47065/bits.v4i3.2558.

H. F. Sinurat, S. D. Nasution, and A. Fau, “Penerapan Metode Selft Organizing Maps ( SOM ) Dalam Rekomendasi Jurusan Calon Mahasiswa Baru ( Studi Kasus : Universitas Imelda Medan ),” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 4, pp. 162–169, 2020, doi: 10.30865/komik.v4i1.2675.

S. N. Kapita and S. Do Abdullah, “Pengelompokkan Data Mutu Sekolah Menggunakan Jaringan Syaraf Tiruan Kohonen-SOM,” JIKO (Jurnal Informatika dan Komputer), vol. 3, no. 1, pp. 56–61, 2020, doi: 10.33387/jiko.

S. N. Kapita and S. Do Abdullah, “Pengelompokkan Data Mutu Sekolah Menggunakan Jaringan Syaraf Tiruan Kohonen-SOM,” JIKO (Jurnal Informatika dan Komputer), vol. 3, no. 1, pp. 56–61, 2020, doi: 10.33387/jiko.

S. dkk Kania, “PROGRAM APLIKASI PENGELOMPOKAN OBJEK DENGAN METODE SELF ORGANIZING MAP,” pp. 17–29, 2019.

W. Budiaji, “Penerapan Reproducible Research pada RStudio dengan Bahasa R dan Paket Knitr,” Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika, vol. 5, no. 1, pp. 1–5, 2019, doi: 10.23917/khif.v5i1.7202.

Y. Anis and R. Rizal Isnanto, “Penerapan Metode Self-Organizing Map (SOM) Untuk Visualisasi Data Geospasial Pada Informasi Sebaran Data Pemilih Tetap (DPT),” Diterima Publikasi, 2014.

C. D. Suhendra and A. C. Saputra, “Penentuan Parameter Learning Rate Selama Pembelajaran Jaringan Syaraf Tiruan,” vol. 14, no. 2, pp. 202–212, 2020.

Published

2024-04-02

How to Cite

[1]
J. Jubita, C. D. Suhendra, and M. Sanglise, “Sistem penilaian kinerja pegawai di kantor Kementerian Agama Provinsi Papua Barat menggunakan metode Self Organizing Map (SOM)”, AITI, vol. 21, no. 1, pp. 96–116, Apr. 2024.

Issue

Section

Articles