Klasifikasi kualitas mutu susu pasteurisasi menggunakan metode klasifikasi k-Nearest Neighbor
DOI:
https://doi.org/10.24246/aiti.v21i1.58-71Keywords:
Data Mining, k-Nearest Neighbor, Pasteurized MilkAbstract
Milk is a product that is often consumed because it has many good benefits for the body. One of the benefits of milk is that it contains calcium, which is useful for the growth of bones and teeth. However, many consumers still choose dairy products based only on their appearance, even though milk quality is not based on its appearance but is found during milk processing. Pasteurization is the process of heating whole milk at a specific temperature and for a certain period to increase the milk's shelf life and maintain the milk's quality. Two types of pasteurization processes are Long Temperature Long Time and High Temperature Short Time. k-Nearest Neighbor or k-NN is a data mining method used to classify objects from the data, using distance calculations or Euclidean Distance to look for similarities between neighbors. So, based on this problem, milk quality classification is carried out. The research was carried out by classifying milk quality using the K-NN method. The public data used to classify is 1,059 pasteurized milk data, with seven regular or ordinary attributes and one special or class attribute. The K values that will be used in this research are k=3, k=5, and k=7. From the analysis of calculation results using the k-NN method, the accuracy values obtained are k=3 is 97%, k=5 is 89%, and k=7 is 87%.
Downloads
Metrics
References
Z. E. Fitri, L. N. Sahenda, R. S. A. Holili, and D. L. Rukmi, “PERHITUNGAN KOLONI BAKTERI SUSU SEGAR PADA RUANG WARNA YCBCR,” vol. 8, no. 2, 2023.
H. Apriliawan, “IMPLEMENTASI MESIN PASTEURISASI MODERN PEF (PULSED ELECTRIC FIELD) TERHADAP PENGOLAHAN SUSU SAPI PERAH,” 2022.
A. Dany Priyanto, S. Djajati, and R. Yulistiani, “KHADIMUL UMMAH IMPLEMENTASI PULSED ELECTRIC FIELD UNTUK MENINGKATKAN EFEKTIVITAS PASTEURISASI SUSU PADA CV MILKINESIA NUSANTARA DI PONOROGO IMPLEMENTATION OF PULSED ELECTRIC FIELD TO INCREASE THE EFFECTIVENESS OF MILK PASTEURIZATION AT CV MILKINESIA NUSANTARA IN PONOROGO,” vol. 4, 2020, doi: 10.21111/ku.v4i1. DOI: https://doi.org/10.21111/ku.v4i1.5036
B. Hariono, F. Erawantini, A. Budiprasojo, and T. D. Puspitasari, “Perbedaan nilai gizi susu sapi setelah pasteurisasi non termal dengan HPEF (High Pulsed Electric Field),” AcTion: Aceh Nutrition Journal, vol. 6, no. 2, p. 207, Nov. 2021, doi: 10.30867/action.v6i2.531. DOI: https://doi.org/10.30867/action.v6i2.531
F. Ardiansyah, D. Syauqy, and G. E. Setyawan, “Klasifikasi Tingkat Kematangan Susu Kefir dengan Metode K-Nearest Neighbor (KNN) menggunakan Sensor Cahaya dan Sensor Warna,” vol. 3, no. 9, pp. 8608–8613, 2019.
M. H. Abdurrahman, E. Suhartono, and E. Wulandari, “Deteksi Kualitas Kemurnian Susu Sapi Melalui Pengolahan Citra Digital Menggunakan Metode Scale Invariant Feature Transform Dengan Klasifikasi K-nearest Neighbor,” eProceedings of Engineering, vol. 6, no. 2, pp. 3845–3852, 2019.
N. Karolina, “Data Mining Pengelompokan Pasien Rawat Inap Peserta BPJS Menggunakan Metode Clustering (Studi Kasus : RSU.Bangkatan).”
C. Marshela, N. Ibrahim, and E. Wulandari, “Deteksi Kualitas Kemurnian Susu Sapi Melalui Pengolahan Citra Digital Menggunakan Metode Adaptive Region Growing Dan Klasifikasi Learning Vector Quantization Quality Detection of Cow’S Milk Purity Based on Digital Image Processing Using Adaptive Region Gr,” Techno, vol. 6, no. 2, pp. 3822–3829, 2019.
H. Gustiawidi, B. Hidayat, and ..., “Identifikasi Kualitas Kesegaran Susu Sapi Melalui Pengolahan Citra Digital Menggunakan Metode Gray Level Co-occurrence Matrix Dan Local Binary Pattern …,” eProceedings …, vol. 5, no. 3, pp. 4843–4850, 2018.
D. Cahyanti, A. Rahmayani, and S. Ainy Husniar, “Indonesian Journal of Data and Science Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” vol. 1, no. 2, pp. 39–43, 2020. DOI: https://doi.org/10.33096/ijodas.v1i2.13
S. Asmiatun, N. Wakhidah, and A. N. Putri, “Implementing The Augmented Reality Map To Classify The Damaged Roads,” in Engineering, Information and Agricultural Technologi in The Global Digital Revolution, Jul. 2019. DOI: https://doi.org/10.1201/9780429322235-6
I. A. Angreni, S. A. Adisasmita, M. I. Ramli, and S. Hamid, “PENGARUH NILAI K PADA METODE K-NEAREST NEIGHBOR (KNN) TERHADAP TINGKAT AKURASI IDENTIFIKASI KERUSAKAN JALAN,” Rekayasa Sipil, vol. 7, no. 2, p. 63, Jan. 2019, doi: 10.22441/jrs.2018.v07.i2.01. DOI: https://doi.org/10.22441/jrs.2018.v07.i2.01
M. Sholihin and M. Ghofar Rohman, “KLASIFIKASI MUTU TELUR BERDASARKAN FITUR WARNA DENGAN MENGGUNAKAN METODE K-NEAREST NEIGHBOR,” Seminar Nasional Sistem Informasi, vol. 9, 2018. DOI: https://doi.org/10.30736/teknika.v10i2.244
M. R. Alghifari and A. P. Wibowo, “Knn 14,” Jurnal Teknologi & Manajemen Informatika, vol. 5, no. 1, 2019. DOI: https://doi.org/10.26905/jtmi.v5i1.3074
A. Alfani W.P.R., F. Rozi, and F. Sukmana, “Prediksi Penjualan Produk Unilever Menggunakan Metode K-Nearest Neighbor,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 6, no. 1, pp. 155–160, 2021, doi: 10.29100/jipi.v6i1.1910. DOI: https://doi.org/10.29100/jipi.v6i1.1910
M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” ILKOM Jurnal Ilmiah, vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274. DOI: https://doi.org/10.33096/ilkom.v11i3.489.269-274
N. L. W. S. R. Ginantra, C. P. Yanti, G. D. Prasetya, I. B. G. Sarasvananda, and I. K. A. G. Wiguna, “Analisis Sentimen Ulasan Villa di Ubud Menggunakan Metode Naive Bayes, Decision Tree, dan K-NN,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 11, no. 3, pp. 205–215, 2022, doi: 10.23887/janapati.v11i3.49450. DOI: https://doi.org/10.23887/janapati.v11i3.49450
C. P. Yanti, N. W. E. Agustini, and ..., “Perbandingan Metode K-NN Dan Metode Random Forest Untuk Analisis Sentimen pada Tweet Isu Minyak Goreng di Indonesia,” Jurnal Media …, vol. 7, no. April, pp. 756–765, 2023, doi: 10.30865/mib.v7i2.5900.
F. Ginting, E. Buulolo, and E. R. Siagian, “IMPLEMENTASI ALGORITMA REGRESI LINEAR SEDERHANA DALAM MEMPREDIKSI BESARAN PENDAPATAN DAERAH (STUDI KASUS: DINAS PENDAPATAN KAB. DELI SERDANG),” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 3, no. 1, Nov. 2019, doi: 10.30865/komik.v3i1.1602. DOI: https://doi.org/10.30865/komik.v3i1.1602
M. Jurnal and Vol, “RANCANG BANGUN ALAT UKUR PH DAN SUHU BERBASIS SHORT MESSAGE SERVICE (SMS) GATEWAY,” vol. 1, no. 1, 2014.
L. S. Ummah, Karunia Vio Nita Rusyatul., Sutedjo., Rifadil, Moch. Machmud., Mahendra, “Emitor : jurnal teknik elektro.,” Emitor: Jurnal Teknik Elektro, vol. 22, no. 2, pp. 141–147, 2022. DOI: https://doi.org/10.23917/emitor.v22i2.19352
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 AITI
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in AITI: Jurnal Teknologi Informasi is licensed under a Creative Commons Attribution 4.0 International License.