Assessment of the Application of Wind Power in Indonesia

Authors

  • Lilis Noviani Institut Teknologi Yogyakarta

DOI:

https://doi.org/10.24246/ijpna.v4i3.78-85

Keywords:

NRE, global warming, minimize carbon emissions, clean technology, wind power

Abstract

Energy and the environment are major topics of concern throughout the world nowadays. Consumption of fossil fuels is still the dominance to meet energy needs. The adverse effects of the consumption of fossil fuels on the environment and humans are priorities in determining policies. Many countries in the world have begun restructuring their energy mix and exploring the potential of new and renewable energy (NRE). Indonesia is currently in a stage of economic development where the demand for energy consumption is extremly high. The availability of fossil fuel energy is decreasing and is expected to run out in the next 42 years. In addition, environmental pollution due to the use of fossil fuels continues to increase. The application of NRE technologies and better efficiency in energy’s use could help decrease dependence on fossil fuels. One of the energy’s commodities that warrants attention is wind energy. However, the development of wind power plants in Indonesia has many barriers. The low level of trust in wind availability and the high investment costs are the main barriers to its development. The current capacity of wind energy power plants in Indonesia installed is 1.96 MW, whereas the total amount of wind energy available in Indonesia is 970MW. Wind power plants produce less carbon. This makes wind power one of the solutions to have environmentally friendly power plants. This assessment aims to increase awareness for planning for the future with the collaboration of conventional energy and NRE as clean technology to save the world from global warming.

Downloads

Download data is not yet available.

References

Agarwala, R., & Ro, P. I. (2015). Separated Pitch Control at Tip: Innovative Blade Design Explorations for Large MW Wind Turbine Blades. Journal of Wind Energy, 2015, 1–12. https://doi.org/10.1155/2015/895974

Alam, M. M., Murad, M. W., Noman, A. H. M., & Ozturk, I. (2016). Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. Ecological Indicators, 70, 466–479. https://doi.org/http://dx.doi.org/10.1016/j.ecolind.2016.06.043

Arinaldo, D., Adiatma, J. C., & Simamora, P. (2018). Indonesia Clean Energy Outlook Reviewing 2018, Outlooking 2019 (F. Tumiwa & J. Giwangkara, eds.). Retrieved from www.iesr.or.id

Arshad, M. (2019). Global status of wind power generation : theory , practice , and challenges. International Journal of Green Energy, 0(0), 1–18. https://doi.org/10.1080/15435075.2019.1597369

Ayodele, T. R. (2014). Comparative Assessment of SVC and TCSC Controllers on the Small Signal Stability Margin of a Power System Incorporating Intermittent Wind Power Generation. Journal of Wind Energy, 2014, 1–12. https://doi.org/10.1155/2014/570234

Bagheri-Sadeghi, N., Helenbrook, B. T., & Visser, K. D. (2018). Ducted wind turbine optimization and sensitivity to rotor position. Wind Energy Science, 3(1), 221–229. https://doi.org/10.51

Bimanatya, T. E., & Widodo, T. (2018). Fossil fuels consumption, carbon emissions, and economic growth in Indonesia. International Journal of Energy Economics and Policy, 8(4), 90–97. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053076126&partnerID=40&md5=8bbb6ab8fb6635ae915f33d5e0564430

Boersma, S., Doekemeijer, B., Vali, M., Meyers, J., & van Wingerden, J.-W. (2018). A control-oriented dynamic wind farm model: WFSim. Wind Energy Science, 3(1), 75–95. https://doi.org/10.5194/wes-3-75-2018

BP. (2019). BP Statistical Review of World Energy 2019|68th Edition. In BP World Energy. https://doi.org/10.2307/3324639

BP. (2019). BP Energy Outlook 2019 Edition. In BP Energy Outlook. Retrieved from https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2019.pdf

BPPT. (2018). Outlook Energi Indonesia 2018 : Energi Berkelanjutan Untuk Transportasi Darat. In Yudiartono, Anindhita, A. Sugiyono, L. M. A. Wahid, & Adiarso (Eds.), Library of Congress Cataloging-in-Publication Data Oulook (Vol. 134). Retrieved from www.bppt.go.id

Braithwaite, D. (2019). Beyond Fossil Fuels : Indonesia ’ s fiscal transition.

Bruno, L., Horvat, M., & Raffaele, L. (2018). Journal of Wind Engineering & Industrial Aerodynamics Windblown sand along railway infrastructures : A review of challenges and mitigation measures. Journal of Wind Engineering & Industrial Aerodynamics, 177(March), 340–365. https://doi.org/10.1016/j.jweia.2018.04.021

Cebrucean, D., Cebrucean, V., & Ionel, I. (2014). CO2 capture and storage from fossil fuel power plants. Energy Procedia, 63(ii), 18–26. https://doi.org/10.1016/j.egypro.2014.11.003

Chang, Y., Fang, Z., & Li, Y. (2016). Renewable energy policies in promoting financing and investment among the East Asia Summit countries: Quantitative assessment and policy implications. Energy Policy, 95, 427–436. https://doi.org/10.1016/j.enpol.2016.02.017

Damiani, R., Dana, S., Annoni, J., Fleming, P., Roadman, J., van Dam, J., & Dykes, K. (2018). Assessment of wind turbine component loads under yaw-offset conditions. Wind Energy Science, 3(1), 173–189. https://doi.org/10.5194/wes-3-173-2018

Didane, D. H., Rosly, N., Zulkafli, M. F., & Shamsudin, S. S. (2017). Evaluation of Wind Energy Potential as a Power Generation Source in Chad. 2017.

El-Aasar, K. M., & Hanafy, S. A. (2018). Investigating the Environmental Kuznets Curve Hypothesis in Egypt: The Role of Renewable Energy and Trade in Mitigating GHGs. International Journal of Energy Economics and Policy, 8(3), 177–184. Retrieved from http://www.econjournals.com/index.php/ijeep/article/view/6316/3713

Elsherif, A., Fetouh, T., & Shaaban, H. (2016). Power Quality Investigation of Distribution Networks Embedded Wind Turbines. Journal of Wind Energy, 2016, 1–17. https://doi.org/10.1155/2016/7820825

Fajar, Adiatmaputra. (2018).. Indonesia’s first wind farm 90% complete: PLN, The Jakarta Post, January 16.

Damiani, R., Dana, S., Annoni, J., Fleming, P., Roadman, J., van Dam, J., & Dykes, K. (2018). Assessment of wind turbine component loads under yaw-offset conditions. Wind Energy Science, 3(1), 173–189. https://doi.org/10.5194/wes-3-173-2018

Glassbrook, K. A., Carr, A. H., Drosnes, M. L., Oakley, T. R., Kamens, R. M., & Gheewala, S. H. (2014). Life cycle assessment and feasibility study of small wind power in Thailand. Energy for Sustainable Development, 22(1), 66–73. https://doi.org/10.1016/j.esd.2013.12.004

Guo, P. yang, Zhu, D. yang, Lam, J., & Li, V. O. K. (2017). The Future of Wind Energy Development in China. In Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines (pp. 75–94). https://doi.org/http://dx.doi.org/10.1016/B978-0-12-809451-8.00005-9

Gupta, A., Jain, D. K., & Dahiya, S. (2014). Load Sharing of Wind Based Microgrid in Autonomous Operation. Journal of Wind Energy, 2014, 1–7. https://doi.org/10.1155/2014/653864

GWEC. (2019). Gwec| Global Wind Report 2018. In K. Ohlenforst, S. Sawyer, A. Dutton, B. Backwell, R. Fiestas, J. Lee, … N. Balachandran (Eds.), Global Wind Energy Council. Retrieved from www.gwec.net

International Renewable Energy Agency. (2018). Wind Energy. Retrieved from www.irena.org/Statistics

Huenteler, J., Tang, T., Chan, G., & Anadon, L. D. (2018). Why is China ’ s wind power generation not living up to its potential ? https://doi.org/https://doi.org/10.1088/1748-9326/aaadeb

I.Jonan, Nugraha, S., Prasodjo, E., Walujanto, H. N., Rosdiana, D., Santosa, P. I. C. M. J., … Sauqi, K. D. W. S. H. P. J. L. W. A. (2016). Indonesia Energy Outlook 2016 (Saleh Abdurrahman, ed.). Jakarta: KESDM.

Kanya, B., & Visser, K. D. (2018). Experimental validation of a ducted wind turbine design strategy. Wind Energy Science, 3(2), 919–928. https://doi.org/10.5194/wes-3-919-2018

Khan, S., Shah, K., Izhar-Ul-Haq, Khan, H., Ali, S., Ahmad, N., … Sher, M. (2014). Observation of the Starting and Low Speed Behavior of Small Horizontal Axis Wind Turbine. Journal of Wind Energy, 2014, 1–8. https://doi.org/10.1155/2014/527198

Kohler, H.-P., Behrman, J. R., & Arianto, D. (2015). Indonesia Perspectives: Population and Demography. Retrieved from http://www.copenhagenconsensus.com/sites/default/files/indonesia_packet_population.pdf

Kweku, D., Bismark, O., Maxwell, A., Desmond, K., Danso, K., Oti-Mensah, E., … Adormaa, B. (2018). Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming. Journal of Scientific Research and Reports, 17(6), 1–9. https://doi.org/10.9734/jsrr/2017/39630

Lacal-Arántegui, R. (2019). Globalization in the wind energy industry: contribution and economic impact of European companies. Renewable Energy, 134, 612–628. https://doi.org/10.1016/j.renene.2018.10.087

Lakshmi, G. S., Rathore, G. S., Sharma, R., Anand, A., Sharma, S., & Hada, A. S. (2017). Energy Statistics. Retrieved from www.iea.org/statistics/

Lee, J., Kim, H., Qin, J., Faber, M. H., Composites, C., Tidal, I., … Stack, M. M. (2016). Wind Turbine Failures - Tackling current Problems in Failure Data Analysis Wind Turbine Failures - Tackling current Problems in Failure Data Analysis. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/753/7/072027

Liu, J., Yang, Q., Zhang, Y., Sun, W., & Xu, Y. (2019). Analysis of CO 2 Emissions in China ’ s Manufacturing Industry Based on Extended Logarithmic Mean Division Index Decomposition. https://doi.org/10.3390/su11010226

Mann, J., Peña, A., Troldborg, N., & Andersen, S. J. (2018). How does turbulence change approaching a rotor? Wind Energy Science, 3(1), 293–300. https://doi.org/10.5194/wes-3-293-2018

Martosaputro, S., & Murti, N. (2014). Blowing the wind energy in Indonesia. Energy Procedia, 47, 273–282. https://doi.org/10.1016/j.egypro.2014.01.225

Maulidia, M., Dargusch, P., Ashworth, P., & Ardiansyah, F. (2019). Rethinking renewable energy targets and electricity sector reform in Indonesia: A private sector perspective. Renewable and Sustainable Energy Reviews, 101(February 2018), 231–247. https://doi.org/10.1016/j.rser.2018.11.005

Merz, K. O. (2016). Basic controller tuning for large offshore wind turbines. Wind Energy Science Discussions, (2009), 1–36. https://doi.org/10.5194/wes-2016-13

Ministry of Energy and Mineral Resources. (2016). Concept note of energy resilience fund: enhancement of renewable energy share in national energy mix and enhancement of energy conservation aligned with Nawacita and RPJMN.

Muliadi, Ruwaidah, E., & Asyari, A. (2015). Mapping Potential for Wind Energy In Coastal Marine. ASEAN Journal of Systems Engineering, 3(1), 37–40.

Munawer, M. E. (2018). Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining, 17(2), 87–96. https://doi.org/10.1016/j.jsm.2017.12.007

Nguyen, D. L. (2014). Fundamentals of Renewable Energy and Applications A Brief Overview on Assessments of Wind Energy Resource Potential in. Journal of Fundamentals of Renewable Energy and Applications, 4(1), 1–7. https://doi.org/10.4172/2090-4541.1000132

Nugraha, K., Surjosatyo, A., Soemardi, T. P., Wiyono, S., Nugroho, J., & Erwin, E. (2018). Design optimization of hybrid biomass and wind turbine for minapolitan cluster in Domas, Serang, Banten, Indonesia. IOP Conference Series: Earth and Environmental Science, 105, 012010. https://doi.org/10.1088/1755-1315/105/1/012010

Petersen, E. L. (2017). In search of the wind energy potential. Journal of Renewable and Sustainable Energy, 9(5). https://doi.org/10.1063/1.4999514

Pitteloud, J. D. (2019). Global Wind Installations. Retrieved from wwindea.org

Raach, S., Schlipf, D., & Cheng, P. W. (2016). Lidar-based wake tracking for closed-loop wind farm control. Journal of Physics: Conference Series, 753(5), 257–267. https://doi.org/10.1088/1742-6596/753/5/052009

Rajendran, S., & Jena, D. (2014). Control of Variable Speed Variable Pitch Wind Turbine at Above and Below Rated Wind Speed. Journal of Wind Energy, 2014, 1–14. https://doi.org/10.1155/2014/709128

Sanchez, L., & Luan, B. (2018). The Health Cost of Coal in Indonesia GSI REPORT. Retrieved from www.iisd.org/gsi

Sasana, H., Salman, F., Suharnomo, S.-, Nugroho, S. B. M., & Yusuf, A. G. E. (2018). International Journal of Energy Economics and Policy The Impact of Fossil Energy Subsidies on Social Cost in Indonesia. International Journal of Energy Economics and Policy |, 8(2), 168–173. Retrieved from http:www.econjournals.com

Shadman, F., Sadeghipour, S., Moghavvemi, M., & Saidur, R. (2016). Drought and energy security in key ASEAN countries. Renewable and Sustainable Energy Reviews, 53, 50–58. https://doi.org/10.1016/j.rser.2015.08.016

Silang, A., Uy, S. N., Dado, J. M., Cruz, F. A., Narisma, G., Libatique, N., & Tangonan, G. (2014). Wind energy projection for the Philippines based on climate change modeling. Energy Procedia, 52, 26–37. https://doi.org/10.1016/j.egypro.2014.07.051

Smoucha, E. A., Fitzpatrick, K., Buckingham, S., & Knox, O. G. G. (2016). Fundamentals of Renewable Energy and Applications Life Cycle Analysis of the Embodied Carbon Emissions from 14 Wind Turbines with Rated Powers between 50 Kw and 3 . 4 Mw. Journal of Fundamentals of Renewable Energy and Applications, 6(4). https://doi.org/10.4172/20904541.1000211

Staffell, I., & Green, R. (2014). How does wind farm performance decline with age? Renewable Energy, 66, 775–786. https://doi.org/10.1016/j.renene.2013.10.041

Sun, X., & Huang, D. (2014). An explosive growth of wind power in China. International Journal of Green Energy, 11(8), 849–860. https://doi.org/10.1080/15435075.2013.830261

Tagliapietra, S. (2016). Renewable Energy in the Southern and Eastern Mediterranean: Current Trends and Future Developments. In Regulation and Investments in Energy Markets: Solutions for the Mediterranean (pp. 41–71). https://doi.org/10.1016/B978-0-12-804436-0.00003-5

United Nations. (2019). Desa / Population Division. Retrieved from https://population.un.org/wpp/Download/Standard/Population/

United States Environmental Protection Agency. (2017). Carbon Dioxide Uncontrolled Emission Factors. Retrieved from https://www.eia.gov/electricity/annual/html/epa_a_03.html

Vaisala. (2015). Global Wind Map. Retrieved from https://www.vaisala.com/sites/default/files/documents/Vaisala_global_wind_map.pdf?utm_content=Wind-Map

Van Kuik, G. A. M., Peinke, J., Nijssen, R., Lekou, D., Mann, J., Sørensen, J. N., … Skytte, K. (2016). Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy. Wind Energy Science, 1(1), 1–39. https://doi.org/10.5194/wes-1-1-2016

Whitty, J., Haydock, T., Johnson, B., & Howe, J. (2014). On the Deflexion of Anisotropic Structural Composite Aerodynamic Components. Journal of Wind Energy, 2014, 1–13. https://doi.org/10.1155/2014/987414

Downloads

Published

2019-10-31

How to Cite

Noviani, L. (2019). Assessment of the Application of Wind Power in Indonesia. Indonesian Journal of Physics and Nuclear Applications, 4(3), 78–85. https://doi.org/10.24246/ijpna.v4i3.78-85

Issue

Section

Articles