Distribution of Water Phantom BNCT Cyclotron based Using PHITS

  • siti maimanah Universitas Negeri Semarang
  • siti maimanah
  • Susilo Susilo
  • Yohannes Sardjono
Keywords: BNCT, Cyclotron, PHITS, Water Phantom


This research purpose is to estimate the dose distribution of BNCT in water phantom. Some common methods in the treatment of cancer such as brakhiterapi, surgery, chemotherapy, and radiotherapy still have the risk of damaging healthy tissue around cancer cells. BNCT is a selectively-designed technique by targeting high-loaded LET particles to tumors at the cellular level. BNCT proves to be a powerful method of killing cancer without damaging normal tissue. The source of the neutron used from the cyclotron dose in water phantom with the size of 30 cm x 30 cm x 30 cm was calculated using PHITS program. The result from the simulation is that boron water panthom has a dosimetri higher than phantom water without boron.


Download data is not yet available.


[1] World Health Organization. 2017. Available from http://www.who.int/ access on 1 march 2017
[2] Pusat Data dan Informasi Kementerian Kesehatan RI. 2015. Situasi Penyakit Kanker. Jakarta: Kementrian Kesehatan RI
[3] American Cancer Society. Cancer Facts & Figures 2016. Atlanta: American Cancer Society,Inc.
[4] News Medical Life Science. 2017. Brachytherapy Side Effect. Available from http://www.news-medical.net/health/Brachytherapy-Side-Effects.aspx, access on 1 Maret 2017
[5] Cancer Research UK. Treatment. Available from http://www.cancerresearchuk.org/about-cancer/cancers-in-general/treatment, access on 1 Maret 2017
[6] S.Yu. Taskaev, Accelerator Based Epithermal Neutron Source. published in Fizika Elementarnykh Chastits i Atomnogo Yadra, Vol. 46, No. 6 (2015)
[7] Wolfgang A.G. Sauerwein . 2012. Neutron Capture Theraphy: Principles and Aplication. Springer-Verlag Berlin Heidelberg 2012
[8] Y. Sakurai , H. Tanaka, T. Takata, N. Fujimoto, M. Suzuki, S. Masunaga, Y. Kinashi, N. Kondo, M. Narabayashi, Y. Nakagawa. T. Watanabe, K. Ono, and A. Maruhashi., 2015. Advances in Boron Neutron Capture Therapy (BNCT) at Kyoto University - From Reactor-based BNCT to Accelerator-based BNCT. Journal of the Korean Physical Society, Vol. 67, No. 1(2015)
[9] Department Of Health And Human Services. 2012. What To Know About Brachytherapy (A Type of Internal Radiation Therapy). US : National Institutes of Health
[10] Rolf F Barth, M Graca H Vicente, Otto K Harling, W S Kiger Ill, Kent J Riley, Peter J Binns, Franz M Wagner, Minoru Suzuki, Teruhito Aihara, Itsuro Kato, and Shinji Kawabata., 2012. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiation Ocnology 2012, 7:146.
[11] Dragana Krstic, Zoran Javanovic, Vladimir Markovic, Dragoslav Nikezic, and Vlade Urosevic.2014. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy. Cent. Eur. J. Phys:714-718
[12] T. Mitsumoto, S. Yajima, H. Tsutsui, T. Ogasawara, K. Fujita.2013. Cyclotron-Based Neutron Source For BNCT. AIP Conf. Proc. 1525, 319
[13] Lilia Zaidi, Mohamed Belgaid, and Rachid Khelifi. 2016. Monte Carlo based Dosimetry for Neutron Capture Theraphy of Brain Tumour. EPJ Web Conference 128, 04003 (2016)
[14] Emiliano C. C. Pozzi, Jorge E. Cardoso, Lucas L. Colombo, Silvia Thorp, Andrea Monti Hughes, Ana J. , Marcela A. Garabalino, Elisa M. Heber, Marcelo Miller, Maria E. Itoiz, Romina F. Aromando, David W. Nigg, Jorge Quintana, Vero´nica A. Trivillin, and Amanda E. Schwint . 2012. Boron Neutron Capture Theraphy (BNCT) for Liver metastasis: Therapeutic Efficacy in an Experimental Model. Radiat Environ Biophys (2012) 51:331–339)
[15] Schmitz T, Bassler N, Blaickner M, Ziegner M, Hsiao MC, Liu YH, Koivunoro H, Auterinen I, Serén T, Kotiluoto P, Palmans H, Sharpe P, Langguth P, and Hampel G.. 2015. The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron felds. Med. Phys. 42(1)
[16] R. Ahangari, H. Afarideh. 2012. Therapeutic gain prediction for evaluation and optimization of neutron spectra in BNCT. Annals of Nuclear Energy 49: 212–217
[17] Kenta Takada, Tomonori Isobe, Hiroaki Kumada, Tetsuya Yamamoto, Koichi Shida, Daisuke Kobayashi,Yutaro Mori, Hideyuki Sakurai and Takeji Saka. 2014. Evaluation of the radiation dose for whole body in boron neutron capture therapy. Progress in Nuclear Science and Technology, Volume 4: 820-823
[18] Elham Bavarnegin, Hossein Khalafi, Alireza Sadremomtaz,Yaser Kasesaz, and Azim Khajeali .2016. Investigation of Dose Distribution in MixedNeutron-Gamma Field of Boron Neutron Capture Therapy using N-Isopropylacrylamide Gel. Nuclear Enginering and Technology : 1-7
[19] A.J.Kreiner, M.Baldo, J.R.Bergueiro, D.Cartelli a,b,c, W.Castell, V.ThatarVento b, J. Gomez Asoia, D.Mercuri, J.Padulo, J.C.Suarez Sandin, J.Erhardt, J.M.Kesque, A.A.Valda, M.E.Debray, H.R.Somacal, M.Igarzabal, D.M.Minsky, M.S. Herrera, M.E.Capoulat, S.J.Gonzalez, M.F.delGrosso, L.Gagetti, M. SuarezAnzorena, M.Gun, O.Carranza. 2013. Accelerator-based BNCT. Applied Radiation And Isotopes
[20] Zarma SF et al., 2014. Implementing BNCT Through The Use Of An Electron Accelerator. Romanian Reports in Physics, Vol. 66, No. 1: 182–191
How to Cite
maimanah, siti, maimanah, siti, Susilo, S., & Sardjono, Y. (2019). Distribution of Water Phantom BNCT Cyclotron based Using PHITS. Indonesian Journal of Physics and Nuclear Applications, 4(1), 1-7. https://doi.org/10.24246/ijpna.v4i1.1-7