Dinamika Pembalikan Magnetisasi Nanoblock Berbasis Kobalt Teredam Kuat di Bawah Stimulasi Medan Panas
DOI:
https://doi.org/10.24246/juses.v6i1p1-6Keywords:
kobalt, magnetisasi, medan tulis, probabilitasAbstract
Dinamika pembalikan magnetisasi pada nanoblock berbasis kobalt teredam kuat yang distimulasi oleh pemanasan pulsa telah dieksplorasi secara numerik untuk model parallelepiped dengan ukuran 50×50×20 nm3. Pengaturan simulasi diimplementasikan untuk mengevaluasi dua parameter penting dalam perekaman magnetik dengan bantuan panas, yaitu stabilitas termal, dan konsumsi medan tulis. Stabilitas termal diukur melalui medan magnet induksi yang meningkat secara linear hingga 2 Tesla selama 2,5 ns pada kesetimbangan termal terhadap lingkungan. Dalam simulasi sistem dengan stimulasi medan panas, konsumsi medan tulis diselidiki menggunakan dua jenis pulsa, yaitu medan magnet, dan pulsa medan termal. Simulasi ini didasarkan pada persamaan Landau-Lifshift-Gilbert yang memasukkan teorema disipasi fluktuasi dalam menghitung efek fluktuasi termal. Selain itu, parameter-parameter material yang tergantung suhu, yaitu saturasi magnetik, anisotropi magnetik, dan interaksi pertukaran, juga diperhitungkan. Sebagai hasilnya, nanoblock berbasis kobalt yang teredam kuat memiliki penghalang energi magnetik yang tinggi untuk mencegah batasan superparamagnetik. Selain itu, medan penulisan dapat dikontrol melalui pengaturan periode pemanasan, dan juga melalui manipulasi sifat magnetik seperti redaman magnetik intrinsik.
Downloads
References
Azizah, U. M. N., Jessajas, M. B., Handoyo, C., & Wibowo, N. A. (2017). Characteristic of Nano-barium-ferrite as Recording Media Using HAMR Technology. Chiang Mai Journal of Science, 44(4), 1669–1675.
Boardman, R. P. (2005). Computer simulation studies of magnetic nanostructures [Phd, University of Southampton]. https://eprints.soton.ac.uk/45942/
Buschow, K. H. J., & de Boer, F. R. (2003). Physics of Magnetism and Magnetic Materials. Springer US. https://doi.org/10.1007/b100503
Herianto, N. A., Rondonuwu, F. S., & Wibowo, N. A. (2015). Damping Dependence of Reversal Magnetic Field on Co-based Nano-Ferromagnetic with Thermal Activation. Smart Science, 3(1), 16–20. https://doi.org/10.1080/23080477.2015.11665632
Huang, P.-W., & Victora, R. H. (2014). Heat assisted magnetic recording: Grain size dependency, enhanced damping, and a simulation/experiment comparison. Journal of Applied Physics, 115(17), 17B710. https://doi.org/10.1063/1.4862719
Katayama, H., Sawamura, S., Ogimoto, Y., Nakajima, J., Kojima, K., & Ohta, K. (1999). New Magnetic Recording Method Using Laser Assisted Read/Write Technologies. Journal of the Magnetics Society of Japan, 23(S_1_MORIS_99), S1_233-236. https://doi.org/10.3379/jmsjmag.23.S1_233
Liu, Y., Sellmyer, D. J., & Shindo, D. (Eds.). (2006). Handbook of Advanced Magnetic Materials. Springer US. https://doi.org/10.1007/b115335
Miron, I. M., Garello, K., Gaudin, G., Zermatten, P.-J., Costache, M. V., Auffret, S., Bandiera, S., Rodmacq, B., Schuhl, A., & Gambardella, P. (2011). Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature, 476(7359), Article 7359. https://doi.org/10.1038/nature10309
Oogane, M., Kubota, T., Naganuma, H., & Ando, Y. (2015). Magnetic damping constant in Co-based full heusler alloy epitaxial films. Journal of Physics D: Applied Physics, 48(16), 164012. https://doi.org/10.1088/0022-3727/48/16/164012
Richter, H. J., & Harkness, S. D. (2006). Media for Magnetic Recording Beyond 100 Gbit/in.2. MRS Bulletin, 31(5), 384–388. https://doi.org/10.1557/mrs2006.98
Suess, D., Vogler, C., Abert, C., Bruckner, F., Windl, R., Breth, L., & Fidler, J. (2015). Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures. Journal of Applied Physics, 117(16), 163913. https://doi.org/10.1063/1.4918609
Tabasum, M. R., Zighem, F., Medina, J. D. L. T., Encinas, A., Piraux, L., & Nysten, B. (2014). Magnetic force microscopy investigation of arrays of nickel nanowires and nanotubes. Nanotechnology, 25(24), 245707. https://doi.org/10.1088/0957-4484/25/24/245707
Tagawa, I., Ikeda, S., & Uehara, Y. (2001). High-Performance Write Head Design and Materials. FUJITSU Sci. Tech. J.
Tipcharoen, W., Kaewrawang, A., & Siritaratiwat, A. (2015). Design and Micromagnetic Simulation of Fe/L10-FePt/Fe Trilayer for Exchange Coupled Composite Bit Patterned Media at Ultrahigh Areal Density. Advances in Materials Science and Engineering, 2015, e504628. https://doi.org/10.1155/2015/504628
Wibowo, N. A., Handoyo, C., & Sasongko, L. R. (2019). Thermally Activated Magnetic Switching Mode for Various Thicknesses of Perpendicularly Ferromagnetic Nano-dot. Nanoscience & Nanotechnology-Asia, 9(2), 259–266. https://doi.org/10.2174/2210681208666180507101809
Wibowo, N. A., Nugroho, D. B., & Riyanto, C. A. (2019). Performance of Magnetic Switching at the Recording Temperature in Perpendicularly Magnetized Nanodots. Journal of Magnetics, 24(1), 17–23. https://doi.org/10.4283/JMAG.2019.24.1.017
Wibowo, N. A., Rondonuwu, F. S., & Purnama, B. (2014). Low Writing Field on Perpendicular Nano-ferromagnetic. Journal of Magnetics, 19(3), 237–240. https://doi.org/10.4283/JMAG.2014.19.3.237
Wibowo, N. A., & Trihandaru, S. (2016). Magnetic switching probability of perpendicularly magnetized nano-dot. Journal of Physics: Conference Series, 776(1), 012027. https://doi.org/10.1088/1742-6596/776/1/012027
Wu, H., Mendez, A. R., Xiong, S., & Bogy, D. B. (2015). Lubricant reflow after laser heating in heat assisted magnetic recording. Journal of Applied Physics, 117(17), 17E310. https://doi.org/10.1063/1.4914073