Diversity of Arbuscular Mycorrhizal Fungi (AMF) in Rhizosphere of Some Economic and Medicinal Crops in SEAMEO BIOTROP, Bogor, West Java


  • Henokh Christian Prasgi Faculty of Biology, Satya Wacana Christian University https://orcid.org/0000-0003-1058-8517
  • Risa Rosita SEAMEO BIOTROP
  • Rizky Susanti Biology Program, Department of Science, Sumatera Institute of Technology
  • Ayu Paraswati Kusuma Dewi Biology Program, Department of Science, Sumatera Institute of Technology
  • Fransiscus Jason Wiguna Biology Program, School of Life Sciences and Technology, Bandung Institute of Technology
  • Novita Dwi Yanti Biology Program, Department of Science, Sumatera Institute of Technology
  • Sunardi Ikay SEAMEO BIOTROP
  • Lusiawati Dewi Faculty of Biology, Satya Wacana Christian University




Arbuscular Mycorrhizal Fungi (AMF), rhizosphere, morphology identification, spore density, relative abundance


The diversity of terrestrial plants in Indonesia are very huge, including production crops such as palm oil (Elaeis sp.), teak (Tectona grandis L.), lemon (Citrus limon L.) and Aloe vera. The quality of production crops is influenced by the diversity of soil microorganisms, namely the Arbuscular Mycorrhizal Fungi (AMF). AMF plays an important role in the growth and development of the host plant. This study aims to determine the diversity of AMF in the rhizosphere of some production crops at SEAMEO BIOTROP, West Java. Research methods are soil sampling and preparation, soil sieving, AMF spore extraction and morphological identification. As a result, spore density tends to be uniform in all four plants (3 spores per 10 gram). The highest to lowest relative abundance percentage of spores on Glomus sp. (52.17%), Acaulospora sp. (34.79%) and Gigaspora sp. (13,04%). Soil, host plant and AMF factors affect the diversity of AMF.


Download data is not yet available.


Angelard, C., Tanner, C. J., Fontanillas, P., Niculita-Hirzel, H., Masclaux, F., & Sanders, I. R. (2014). Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation. ISME Journal, 8(2), 284–294. https://doi.org/10.1038/ismej.2013.154

Bentivenga, S. P. & Morton, J. B. (1995). A monograph of the genus Gigaspora, incorporating developmental patterns of morphological characters. Mycologia, 87: 720-732.

Berrocal, A., Gaitan-Alvarez, J., Moya, R., Fernández-Sólis, D., Ortiz-Malavassi, E. (2020). Development of heartwood, sapwood, bark, pith and wood density of teak (Tectona grandis) in fast-growing plantations in Costa Rica. J For Res, 31(2), 667-676. https://doi.org/10.1007/s11676-018-0849-5.

Bukhari, M. J., & Rodrigues, B. F. (2006). Taxonomic Identification of Arbuscular Mycorrhizal (AM) Fungi.

Cardarelli, M., Rouphael, Y., Rea, E., Lucini, L., Pellizzoni, M., & Colla, G. (2013). Effects of fertilization, arbuscular mycorrhiza, and salinity on growth, yield, and bioactive compounds of two Aloe species. HortScience, 48(5), 568–575. https://doi.org/10.21273/hortsci.48.5.568

Carrino-Kyker, S. R., Kluber, L. A., Coyle, K. P., & Burke, D. J. (2016). Detection of phosphate transporter genes from arbuscular mycorrhizal fungi in mature tree roots under experimental soil pH manipulation. Symbiosis, 72(2), 123–133. https://doi.org/10.1007/s13199-016-0448-1

Chaiyasen, A., Douds, D. D., Gavinlertvatana, P., & Lumyong, S. (2017). Diversity of arbuscular mycorrhizal fungi in Tectona grandis Linn.f. plantations and their effects on growth of micropropagated plantlets. New Forests, 48(4), 547–562. https://doi.org/10.1007/s11056-017-9584-6

Chakraborty, K., Sinha, S., Debnath, A., Roy Das, A., Saha, A. K., & Das, P. (2016). Arbuscular mycorrhizal fungal colonization in three different age groups of rubber plantations in Tripura, North-East India. Plant Pathology & Quarantine, 6(2), 122–131. https://doi.org/10.5943/ppq/6/2/2

Douhan, G. W., Petersen, C., Bledsoe, C. S., & Rizzo, D. M. (2005). Contrasting root associated fungi of three common oak-woodland plant species based on molecular identification: Host specificity or non-specific amplification? Mycorrhiza, 15(5), 365–372. https://doi.org/10.1007/s00572-004-0341-2

Eddiwal, ., Saidi, A., Lenin, I., Husin, E. F., & Rasyidin, A. (2014). Potential Selection of Arbuscular Mycorrhizal Fungi (AMF) Indigenous Ultisols through the Production of Glomalin. Journal of Tropical Soils, 19(3), 181–189. https://doi.org/10.5400/jts.2014.v19i3.181-189

Giovannetti, M., Avio, L., & Sbrana, C. (2010). Fungal Spore Germination and Pre-symbiotic Mycelial Growth – Physiological and Genetic Aspects. In H. Koltai (Eds.), Arbuscular Mycorrhizas: Physiology and Function (pp. 3-32). Springer Science.

Holste, E. K., Holl, K. D., Zahawi, R. A., & Kobe, R. K. (2016). Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration. Ecology and Evolution, 6(20), 7253–7262. https://doi.org/10.1002/ece3.2487

Husein, M., Umami, N., Pertiwiningrum, A., Rahman, M. M., & Ananta, D. (2022). The Role of Arbuscular Mycorrhizal Fungi Density and Diversity on the Growth and Biomass of Corn and Sorghum Forage in Trapping Culture. Tropical Animal Science Journal, 45(1), 37–43. https://doi.org/10.5398/tasj.2022.45.1.37

Jakarta. Central Bureau of Statistics. (2021). Statistik Palm oil Indonesia 2020. Retrieved from https://www.bps.go.id/publication/2021/11/30/5a3d0448122bc6753c953533/statistik-kelapa-sawit-indonesia-2020.html

Jakarta. Central Bureau of Statistics. (2022). Statistik Hortikultura 2021. Retrieved from https://www.bps.go.id/publication/2022/06/08/44e935e8c141bcb37569aed3/statistik-hortikultura-2021.html

Jakarta. Directorate General of Conservation on Natural Resources and Ecosystem. Ministry of Environment and

Forestry. (2019). the Sixth National Report of Indonesia to the Convention on Biological Diversity. Retrieved from https://balaikliringkehati.menlhk.go.id/wp-content/uploads/6.-Sixth-National-Report.pdf

Kawahara, A., An, G. H., Miyakawa, S., Sonoda, J., & Ezawa, T. (2016). Nestedness in arbuscular mycorrhizal fungal communities along soil pH gradients in early primary succession: Acid-tolerant fungi are pH generalists. PLoS ONE, 11(10), 1–20. https://doi.org/10.1371/journal.pone.0165035

Klimek-Szczykutowicz, M., Szopa, A., & Ekiert, H. (2020). Citrus limon (Lemon) phenomenon—a review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants, 9(1), 1–24. https://doi.org/10.3390/plants9010119

Krings, M., Cúneo, N. R., Harper, C. J., & Rothwell, G. W. (Ed.). (2018). Transformative Paleobotany: Papers to Commemorate the Life and Legacy of Thomas N. Taylor. Cambridge: Academic Press.

LebanonTurf. (2013). Mycorrhizal Fungi and pH Soil or Water. Retrieved from https://www.lebanonturf.com/education-center/biological-plant-treatments/mycorrhizal-fungi-and-ph-of-soil-or-water

Lubis, A. P., Hamzah, H., & Tamin, R. P. (2018, November). Eksplorasi dan Identifikasi Fungi Mikoriza Arbuskula (AMF) Indigenous Pada Tanah Bekas Tambang Batubara. Paper presented at Seminar Nasional Fakultas Pertanian Universitas Jambi. http://conference.unja.ac.id/SemnasSDL/article/view/32

Marhawati, M. (2019). Analisis Karakteristik dan Tingkat Pendapatan Usahatani Jeruk Pamelo Di Kabupaten Pangkep. JEKPEND: Jurnal Ekonomi Dan Pendidikan, 2(2), 39–44. https://doi.org/10.26858/jekpend.v2i2.9969

Market Brief: Crude Palm Oil. (2014). Sydney: Indonesian Trade Promotion Centre.

Martínez-García, L. B., & Pugnaire, F. I. (2011). Arbuscular mycorrhizal fungi host preference and site effects in two plant species in a semiarid environment. Applied Soil Ecology, 48(3), 313–317. https://doi.org/10.1016/j.apsoil.2011.04.003

Muryati, S., Mansur, I. & Budi, S. W. (2016). Keanekaragaman fungi mikoriza arbuskula pada rhizosfer Desmodium spp. asal PT. Cibaliung Sumberdaya, Banten. Jurnal Silvikultur Tropika, 7(3), 188-197.

National Geographic Society. (2022). Crops. Retrieved from https://education.nationalgeographic.org/resource/crop

Nusantara, A. D., Bertham, R. Y. H. & Mansur, I. (2015). Bekerja dengan Fungi Mikoriza Arbuskula (2nd ed.). Bogor: SEAMEO BIOTROP.

Pyšek, P., Manceur, A. M., Alba, C., McGregor, K. F., Pergl, J., Štajerová, K., Chytrý, M., Danihelka, J., Kartesz, J., Klimešová, J., Lučanová, M., Moravcová, L., Nishino, M., Sádlo, J., Suda, J., Tichý, L., & Kühn, I. (2015). Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology, 96(3), 762–774. https://doi.org/10.1890/14-1005.1

Quatrini, P., Gentile, M., Carimi, F., De Pasquale, F., & Puglia, A. M. (2003). Effect of native arbuscular mycorrhizal fungi and Glomus mosseae on acclimatization and development of micropropagated Citrus limon (L.) Burm. Journal of Horticultural Science and Biotechnology, 78(1), 39–45. https://doi.org/10.1080/14620316.2003.11511584

Rahmawati, R. B., Widiyatno, W., Hardiwinoto, S., Budiadi, B., Nugroho, W. D., Wibowo, A., & Rodiana, D. (2022). Effect of spacing on growth, carbon sequestration, and wood quality of 8-year-old clonal teak plantation for sustainable forest teak management in Java Monsoon Forest, Indonesia. Biodiversitas, 23(8), 4180–4188. https://doi.org/10.13057/biodiv/d230840

Rodríguez-Morelos, V. H., Soto-Estrada, A., Pérez-Moreno, J., Franco-Ramírez, A., & Díaz-Rivera, P. (2014). Arbuscular mycorrhizal fungi associated with the rhizosphere of seedlings and mature trees of Swietenia macrophylla (Magnoliophyta: Meliaceae) in Los Tuxtlas, Veracruz, Mexico. Revista Chilena de Historia Natural, 87(1), 1–10. https://doi.org/10.1186/s40693-014-0009-z

Rosita, R., Widiastuti, R., Mansur, I., & Faulina, S. A. (2020). Potential use of Claroideoglomus etunicatum to enrich signal grass (Brachiaria decumbens Stapf.) for silvopasture preparation. E-Journal Menara Perkebunan, 88(1), 61–68. https://doi.org/10.22302/iribb.jur.mp.v88i1.364

Sadovski, A. N. (2019). Study on ph in water and potassium chloride for bulgarian soils. Eurasian Journal of Soil Science, 8(1), 11–16. https://doi.org/10.18393/ejss.477560

Sedaghati, E., Yazdanpanah, M., & Nadi, M. (2021). A review of taxonomic studies of Arbuscular Mycorrhizal Fungi in Iran. Mycologia Iranica, 8(2), 15–30. https://doi.org/10.22043/MI.2022.358512.1215

Sofowora, A., Ogunbodede, E., & Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional, Complementary, and Alternative Medicines, 10(5), 210–229. https://doi.org/10.4314/ajtcam.v10i5.2

Soil Science Society of America. (2018). Soil Phosphorus Availability and Lime: More Than Just pH? Retrieved from https://www.soils.org/news/science-news/soil-phosphorus-availability-and-lime-more-just-ph/

Sundram, S., Meon, S., Seman, I. A., & Othman, R. (2014). Application of arbuscular mycorrhizal fungi with Pseudomonas aeruginosa UPMP3 reduces the development of Ganoderma basal stem rot disease in oil palm seedlings. Mycorrhiza, 25(5), 387–397. https://doi.org/10.1007/s00572-014-0620-5

Vierheilig, H. & Bago, B. (2005). Host and Non-Host Impact on the Physiology of the AM Symbiosis. In S. Declerck (Eds.), In Vitro Culture of Mycorrhizas (pp. 141-158). Soil Biology: Springer-Verlag Berlin Heidelberg.

Wickens, G. E. (1990). What Is Economic Botany? Economic Botany, 44(1), 12–28. http://www.jstor.org/stable/4255208

Yakop, F., Taha, H., & Shivanand, P. (2019). Isolation of fungi from various habitats and their possible bioremediation. Current Science, 116(5), 733–740. https://doi.org/10.18520/cs/v116/i5/733-740

Yang, H., Zang, Y., Yuan, Y., Tang, J., & Chen, X. (2012). Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: Evidence from ITS rDNA sequence metadata. BMC Evolutionary Biology, 12(50). https://doi.org/10.1186/1471-2148-12-50




How to Cite

Prasgi, H. C., Rosita, R., Susanti, R., Dewi, A. P. K., Wiguna, F. J., Yanti, N. D., Ikay, S., & Dewi, L. (2022). Diversity of Arbuscular Mycorrhizal Fungi (AMF) in Rhizosphere of Some Economic and Medicinal Crops in SEAMEO BIOTROP, Bogor, West Java. Journal of Science and Science Education, 6(1), 1–13. https://doi.org/10.24246/josse.v6i1p1-13