Bioremediation of Pb and Cd contaminated soil using microorganism

A review

  • Andriyani Dea Wulandari Magister Biologi
  • Vincentia Irene Meitiniarti Faculty of Biology, Universitas Kristen Satya Wacana
Keywords: Bioremediation, Contaminated soil, Microorganisms, Pb and Cd

Abstract

The increase in industrial waste, especially those containing Pb and Cd, which is discharged into the environment results in more polluted environment conditions. Polluted enviornment is very dangerous for the survival of living things. This  technique use living things to reduce environmental pollution, making it safe for living things. Bioremediation can be carried out by in-situ and ex-situ methods with several bioremediation mechanisms, including biosorption, bioaccumulation, bioleaching, and bioprecipitation. The use ex-situ techniques in bioremediation is easier to do, especially if it is carried out to remediate soils under controlled conditions in the laboratory.

Downloads

Download data is not yet available.

References

Achal, V., Pan, X., Zhang, D., & Fu, Q. (2012). Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. Journal of Microbiology and Biotechnology, 22(2), 244–247.

Aung, W. L., Hlaing, N. N., & Aye, K. N. (2013). Biosorption of lead (Pb2+) by using Chlorella vulgaris. International Journal of Chemistry, Enviromental & Biological Sciences, 1(2), 408–412.

Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments : A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94.

Costa, A. C. A., & Duta, F. P. (2001). Bioaccumulation of copper, zinc, cadmium, and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis. Brazillian Journal of Microbiology, 31, 1–5.

Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., Singh, B. P., Rai, J. P., Sharma, P. K., Lade, H., & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7(2), 2189–2212.

Fashola, M. O., Ngole, V. M., & Babalola, O. O. (2016). Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health, 13(11), 1047.

Gabriel, J., Kofroňová, O., Rychlovský, P., & Krenželok, M. (1996). Accumulation and effect of cadmium in the wood-rotting basidiomycete Daedalea quercina. Bulletin of Environmental Contamination and Toxicology, 57(3), 383–390.

Giwa, O., & Ibitoye, F. (2017). Bioremediation of heavy metal in crude oil contaminated soil using isolated Indigenous microorganism cultured with E coli DE3 BL21. International Journal of Engineering and Applied Sciences, 4(6), 67–70.

Gutiérrez, C., Hansen, H. K., Hernández, P., & Pinilla, C. (2015). Biosorption of cadmium with brown macroalgae. Chemosphere, 138, 164–169.

Hardiani, H., Kardiansyah, T., & Sugesty, S. (2016). Bioremediasi logam timbal (Pb) dalam tanah terkontaminasi limbah sludge industri kertas proses deinking. Jurnal Selulosa, 1(1), 31–41.

Heidari, P., & Panico, A. (2020). Sorption mechanism and optimization study for the bioremediation of Pb (II) and Cd (II) contamination by two novel isolated strains Q3 and Q5 of Bacillus sp. International Journal of Environmental Research and Public Health, 17(11), 4059.

Huang, D.-L., Zeng, G.-M., Jiang, X.-Y., Feng, C.-L., Yu, H.-Y., Huang, G.-H., & Liu, H.-L. (2006). Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw. Journal of Hazardous Materials, 134(1–3), 268–276.

Ihsan, Y. N., Aprodita, A., Rustikawati, I., & Pribadi, T. D. K. (2015). Kemampuan Gracilaria sp. sebagai agen bioremediasi dalam menyerap logam berat Pb. Jurnal Kelautan, 8(1), 10–18.

Isa, I. (2004). Bioleaching logam berat timbal dari sedimen tercemar oleh Pseudomonas fluorescens, Thiobacillus ferrooxidans, Escherichia coli dan Bacillus sp. Universitas Airlangga.

Kurniawan, A., & Ekowati, N. (2016). Review: Potensi mikoremediasi logam berat. Jurnal Bioteknologi & Biosains Indonesia, 3(1), 36.

Kurniawan, A., & Mustikasari, D. (2019). Review: Mekanisme akumulasi logam berat di ekosistem pascatambang timah. Jurnal Ilmu Lingkungan, 17(3), 408–415.

Masithah, E. D., Boedi, S. R., & Tri, N. O. K. H. (2011). Studi perbandingan kemampuan Nannochloropsis sp. dan Spirulina sp. sebagai agen bioremediasi terhadap logam berat (Pb). Jurnal Ilmiah Perikanan dan Kelautan, 3(2), 167–173.

Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. International Journal of Environmental Research and Public Health, 14(12), 1504.

Purnamawati, F. S., Soeprobowati, T. R., & Izzati, M. (2015). Potensi Chlorella vulgaris Beijerinck dalam remediasi logam berat Cd dan Pb skala laboratorium. Bioma Berkala Ilmiah Biologi, 16(2), 102–113.

Rahmadiani, W. D. D., & Aunurohim. (2013). Bioakumulasi logam berat Kadmium (Cd) oleh Chaetoceros calcitrans pada konsentrasi sublethal. 2(2), E202–E206.

Rana, M. N., Tangpong, J., & Rahman, M. M. (2018). Toxicodynmics of Lead, Cadmium, Mercury, and Arsenic-induced kidney toxicity and treatment strategy: A minireview. In Toxicology Reports 2018 (Vol. 5).

Ratnawati, E., Ermawati, R., & Naimah, S. (2010). Teknologi biosorpsi oleh mikroorganisme, solusi alternatif untuk mengurangi pencemaran logam berat. Jurnal Kimia dan Kemasan, 32(1), 34–40.

Sankarammal, M., Thatheyus, A., & Ramya, D. (2014). Bioremoval of cadmium using Pseudomonas fluorescens. Open Journal of Water Pollution and Treatment, 1(2), 92–100.

Seh-Bardan, B. J., Othman, R., Wahid, S. A., Husin, A., & Sadegh-Zadeh, F. (2012). Bioleaching of heavy metals from mine tailings by aspergillus fumigatus. Bioremediation Journal, 16(2), 57–65.

Singh, V., Chauhan, P. K., Kanta, R., Dhewa, T., & Kumar, V. (2010). Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. International Journal of Pharmaceutical Sciences Review and Research, 3(2), 164–167.

Sorokina, K., Piligaev, A., Bryanskaya, A., & Peltek, S. (2012). Biosorption of lead by using Chlorella vulgaris. International Conference on Chemical Engineering and Its Applications, 6(2), 126–129.

Su, C., Jiang, L.-Q., & Zhang, W.-J. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skeptics and Critics, 3(2), 24–38.

Susana, R., & Suswati, D. (2011). Ketersediaan Cd, gejala toksisitas dan pertumbuhan 3 spesies Brassicaceae pada media gambut yang dikontaminasikan kadmium (Cd). Jurnal Perkebunan dan Lahan Tropika, 1(2), 9–16.

Winardi, W., Haryono, E., Sudrajat, S., & Soetarto, E. S. (2020). In situ bioremediation strategies for the recovery of Mercury- contaminated land in abandoned traditional gold mines in Indonesia. Biosaintifika, 12(3), 469–477.

Xie, Y., Fan, J., Zhu, W., Amombo, E., Lou, Y., Chen, L., & Fu, J. (2016). Effect of heavy metals pollution on soil microbial diversity and bermudagrass. Frontiers in Plant Science, 7, 755.

Yudo, S. (2018). Kondisi pencemaran logam berat di perairan sungai DKI Jakarta. Jurnal Air Indonesia, 2(1), 1–15.
Published
2021-09-22
How to Cite
Wulandari, A., & Meitiniarti, V. (2021). Bioremediation of Pb and Cd contaminated soil using microorganism. Journal of Science and Science Education, 5(1), 1-11. https://doi.org/10.24246/josse.v5i1p1-11