Extraction and characterization of algal oil from Lake Sebu, South Cotabato

A potential source of biodiesel


  • Alvin Q. Larida Educator/Researcher
  • Jaeven B. Bañaga




Algae, Biodiesel, Extraction efficiency, Free Fatty Acid, Functional Groups and FAMEs, FAMEs


Algae is rich in storage lipids and fats that can be converted into biodiesel. This study determined the algal oil from Lake Sebu, South Cotabato as biodiesel source. Samples were prepared at varying treatments and ratio with n-Hexane. The algal oil was extracted and efficiency % were determined.  FFA% and Acid Number of the oil extract were identified using chemical titration. FTIR was used for Chemical characterization while GC-MS identified fatty acid and other organics. With the constant volume of solvent and by changing the mass of dried algae, the percent yield of oil increases as the solvent to algae ratio increases.  Therefore, biomass ratio with n-Hexane should be 1:3. The IR spectra of the oil extract indicated the presence of functional groups such as amine and carbonyl group of amides, methylene, methyl, and alkene. While, GC-MS showed that the fatty acids found can be a potential biodiesel.


Download data is not yet available.


Abomohra, A. E. F., Wagner, M., El-Sheekh, M., & Hanelt, D. (2013). Lipid and total fatty acid productivity in photoautotrophic fresh water algae: screening studies towards biodiesel production. Journal of Applied Phycology, 25(4), 931–936.

Abou-Shanab, R. A. I., Hwang, J., Cho, Y., Min, B., & Jeon, B. (2011). Characterization of algal species isolated from fresh water bodies as a potential source for biodiesel production. Applied Energy, 88(10), 3300–3306.

Abubakar, N., Amran, N., & Yasin, H. (2018). Extraction and characterization of oil from microalgae through soxhlet extraction method. Thesis in Nigeria, 21(3), 735–744.

Anderson, R. (2011). Sample Pre-treatment and Separation. New York: John Wiley.

Arun, J., Shreekanth, S.J., Sahana, R., Raghavi, M. S., Gopinath, K. P., & Gnanaprakash, D. (2017). Studies on influence of process parameters on hydrothermal catalytic liquefaction of microalgae (Chlorella vulgaris) biomass grown in wastewater. Bioresource Technology, 244(1), 963–968.

Baig, R. U., Malik, A., Ali, K., Arif, S., Hussain, S., Mehmood, M., Sami, K., Mengal, A. N., & Kham, M. N. (2018). Extraction of oil from algae for biodiesel production, from quetta, pakistan. Materials Science and Engineering, 414, 012022.

Branyikova, I., Prochazkova, G., Potocar, T., Jezkova, Z., & Branyik, T. (2018). Harvesting of algae by flocculation. Fermentation, 93(4), 1–12.

Buijkr, J. (2013). Future of algae-based biodiesel production in the netherlands. Master’s Thesis, University of Utrecht: Utrecht, The Netherlands, 34–39.

Chaintreau, A. (2011). Simultaneous distillation–extraction: from birth to maturity. Review Flavor and Fragrance Journal, 16(2), 136–148.

Chen, Z., Wang, L., Qiu, S., & Ge, S. (2018). Determination of algal lipid content and fatty acid for biofuel production. BioMed research international, 15(3), 6–12.

Chen, H., Zhou, D., Luo, G., Zhang, S., and Chen, J. (2015). Microalgae for biofuels production: progress and perspectives. Renewable and Sustainable Energy Reviews, 47(C), 427–437.

Christi, Y. (2007). Biodiesel from algae. Biotechnology Advances, 25(3), 294–306.

Clarens, A. F., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2010). Environmental life cycle comparison of algae to other bioenergy feed stocks. Environmental Science and Technology, 44(5), 1813–1819.

Feng, P., Deng, Z., Fan, L., & Hu, Z. (2012). Lipid accumulation and growth characteristics of (Chlorella zofingiensis) under different nitrate and phosphate concentrations. Journal of Bioscience Bioengineering, 114(4), 405–410.

Flotron, V., Houessou, J.K., Bosio, A., Delteil, C., Bermond, A., & Camel V. (2013). Rapid determination of polycyclic aromatic hydrocarbons in sewage sludges using microwave-assisted solvent extraction: Comparison with other extraction methods. Journal of Chromatography A, 999(1-2), 175–184.

Hadavand Mirzaei, H., Mirzajanzadeh, M., Malekzadeh Shafaroudi, S., & Bakhtiari, S. (2013). Fatty acids profiling: a selective criterion for screening algae strains for biodiesel production. Algal Research, 2(3), 258–267.

Hammouda, O., Gaber, A., & Abdel-Raouf, N. (2015). Microalgae and wastewater treatment. Ecotoxicology and Environmental Safety, 31, 205–210.

Hoekman, S. K., Broch, A., Robbins, C., & Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and sustainable Energy Reviews, 6(1), 143–169.

Hoffmann, J. P. (2018). Watewater treatment with suspended and nonsuspended algae. Journal of Phycology, 34, 757–763.

Huang, G.-H., Chen, F., Wei, D., Zhang, X.-W., & Chen, G. (2010). Biodiesel production by algal biotechnology. Applied Energy, 87(1), 38–46

Kaewkannetra, P., Enmak, P., & Chiu, T.-Y. (2012). The effect of CO2 and salinity on the cultivation of (Scenedesmus obliquus) for biodiesel production. Biotechnology and Bioprocess Engineering, 17(4), 591–5979.

Kingston, H. M., & Haswell, S. J. (1997). Microwave-Enhanced Chemistry: Fundamentals, Sample Preparation and Applications. American Chemical Society.

Knothe, G. (2010). Biodiesel and renewable diesel: a comparison. Progress in Energy and Combustion Science, 36(3), 364–373.

Lin, Q., Gu, N., & Lin, J. (2012). Effect of ferric ion on nitrogen consumption, biomass and oil accumulation of a (Scenedesmus rubescens)-like microalga. Bioresource Technology, 112(1), 242–2478.

Hurd, C. L., Harrison, P. J., Bischof, K. & Lobban, C. S. (2014). Light and photosynthesis. In Seaweed Ecology and Physiology (pp. 146–150). Cambridge University Press.

Luque de Castro, M. D., & da Silva, M.P. (1997). Strategies for solid sample treatment. Trends in Analytical Chemistry, 16(1), 16–24.

Lundquist, T. J., Woertz, I. C., Quinn, N. W. T., & Benemann, J. R. (2010). A realistic technology and engineering assessment of algae biofuel production. University of California.

Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Algae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.

McDonald, J.H. (2014). Handbook of Biological Statistics (3rd ed.). Sparky House Publishing.

Meng, X., Jianming, Y., Xu, X., Zhang, L., Nie, Q., & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy, 34 (1), 1–5.

Mujtaba, G., Choi, W., Lee, C.G., & Lee, K. (2012). Lipid production by (Chlorella vulgaris) after a shift from nutrient-rich to nitrogen starvation conditions. Bioresource Technology, 123(2–3), 279–2835.

Park, D. H., Ruy, H. W., Lee, K. Y., Kang, C. H., Kim, T. H., & Lee, H. Y. (1998). The production of hydrocarbons from photoautotrophic growth of salina 1650. In: Finkelstein M., Davison B.H. (eds) Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology (pp. 739–746). Humana Press, Totowa, NJ.

Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17–25

Prabakaran, P., & Ravindran, A. D. (2011). A comparative study on effective cell disruption methods for lipid extraction from microalgae. Letters in Applied Microbiology, 53(2), 150–154

Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2011). Dual role of algae: Phytoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411–3424.

Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., & Yu, T.-H. (2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238–1240.

Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., & Smith, A. G. (2010). Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology. 21(3), 277–286.

Singh, J., & Gu, S. (2010). Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews, 14(9), 2596–2610.

Sivakumar, G., Xu, J., Thompson, R. W., Yang, Y., Randol-Smith, P., & Weathers, P. J. (2012). Integrated green algal technology for bioremediation and biofuel. Bioresource Technology, 107, 1–9

Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2016). Commercial applications of algae. Journal of Bioscience and Bioengeering, 101(2), 87–96.

Sousa, C., de Winter, L., Janssen, M., Vermue, M. H., & Wijffels, R. H. (2012). Growth of the algae (Neochloris oleoabundans) at high partial oxygen pressures and sub-saturating light intensity. Bioresource Technology, 104(2), 565–5707.

Talebi, A. F., Mohtashami, S. K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., Hadavand Mirzaei, H., Mirzajanzadeh, M., Malekzadeh, S. S., & Bakhtiari, S. (2013). Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2(2), 258–267.

Thomas, W. H., Tornabene, T. G., & Weissman, J. (1984). Screening for lipid yielding algae. Solar Energy Research Institute, STR-231-2207.

Vidyadharani, G., & Dhandapani, R. (2013). Fourier transform infrared (FTIR) spectroscopy for the analysis of lipid from Chlorella vulgaris. Elixir Applied Biology, 61(1), 16753–16756.

Woertz, I., Feffer, A., Lundquist, T., & Nelson, Y. (2009). Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. Journal of Environmental Engineering, 135(1), 1115–1122.

Yun, Y. S., Lee, S. B., Park, J. M., Lee, C. I., & Yang, J. W. (1997). Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemistry Technology Biotechnology, 69, 451–455

Yun, H.-S., Lee, H., Park, Y.-T., Ji, M.-K., Kabra, A. N., Jeon, C., Jeon, B.-H., & Choi, J. (2014). Isolation of novel algae from acid mine drainage and its potential application for biodiesel production. Applied Biochemistry and Biotechnology, 173, 2054–2064.

Yuvarani, M., et al. (2017). Performance and emission characteristics of diesel engine. International Journal of Engineering in Africa, 32, 100–110.

Zhao, G., Yu, J., Jiang, F., Zhang, X., & Tan, T. (2012). The effect of different trophic modes on lipid accumulation of (Scenedesmus quadricauda). Bioresource Technology, 114(1), 466–4714.




How to Cite

Larida, A. Q., & Bañaga, J. B. (2021). Extraction and characterization of algal oil from Lake Sebu, South Cotabato: A potential source of biodiesel. Journal of Science and Science Education, 5(1), 12–25. https://doi.org/10.24246/josse.v5i1p12-25