In Vitro and In Vivo Test of Boron Delivery Agent for BNCT

  • Sista Dyah Wijaya Pharmaceutical Science and Technology, School of Pharmacy, Bandung Institute of Technology
  • Bagaswoto Poedjomartono Department of Radiology, Radio Nuclear Services, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada
  • Yohannes Sardjono Pusat Sains Dan Teknologi Akselerator; Badan Tenaga Nuklir Nasional (PSTA BATAN) / Center of Science and Technology of Accelerator; National Nuclear Energy Agency
Keywords: in vivo, in vitro, boron delivery agent, BNCT, clinical studies


BNCT is an alternate therapy for treating cancer. The principle of BNCT involves a neutron boron uptake and a fission reaction that produce alpha particles and Li ions with a high level of linear energy transfer in the tissue. It is effective in killing tumor cells. To administer boron in the tumor cells, a boron delivery agent is needed. Thus far, there are a variety of boron delivery agents that have been developed. To date, just two main boron-based drugs, BPA and BSH, have been used for clinical studies. Many other boron delivery agents have been evaluated in vivo and in vitro but have not been evaluated clinically. Therefore, the other boron delivery agents have not been used in BNCT clinical studies.


Download data is not yet available.


1. Jacob, M., Varghese, J., Murray, R. K., & Weil, P. A. (2015). Cancer: An Overview. Harper’s Illustrated Biochemistry, 30e, 1–3. Retrieved from
2. Credits, R. (2018). Cancer 12. Cancer, (September 2018), 2018.
3. Takagaki, M., Sakai, R., Tanaka, T., Ohsawa, N., Akagi, H., & Ono, K. (2004). Boron neutron capture therapy for malignant brain tumors. KURRI Progress Report, 140.
4. Coderre, J. A., & Morris, G. M. (2006). The Radiation Biology of Boron Neutron Capture Therapy. Radiation Research, 151(1), 1.
5. Practice, T. (2016). Boron Neutron Capture Therapy : Delivery Agents Used in, XX(1), 25–32.
6. Barth, R. F., Mi, P., & Yang, W. (2018). Boron delivery agents for neutron capture therapy of cancer. Cancer Communications, 38(1), 1–15.
7. Sivaev, I. B., & Bregadze, V. V. (2009). Polyhedral boranes for medical applications: Current status and perspectives. European Journal of Inorganic Chemistry, (11), 1433–1450.
8. Sauerwein, W. A. G., Wittig, A., Moss, R., & Nakagawa, Y. (2012). Neutron capture therapy: Principles and applications. Neutron Capture Therapy: Principles and Applications, 9783642313, 1–553.
9. R.F., B., & A.H., S. (1997). Boron neutron capture therapy of brain tumors - Current status and future prospects. Journal of Neuro-Oncology, 33(1–2), 3–7. Retrieved from 200
10. Nedunchezhian, K., Aswath, N., Thiruppathy, M., & Thirugnanamurthy, S. (2016). Boron neutron capture therapy - a literature review. Journal of Clinical and Diagnostic Research, 10(12), ZE01–ZE04.
11. Coderre, J. A., Turcotte, J. C., Riley, K. J., Binns, P. J., Harling, O. K., & Kiger, W. S. (2003). Boron Neutron Capture Therapy: Cellular Targeting of High Linear Energy Transfer Radiation. Technology in Cancer Research and Treatment, 2(5), 355–375.
12. Wittig, A., Sauerwein, W. A., & Coderre, J. A. (2000). Mechanisms of transport of p-borono-phenylalanine through the cell membrane in vitro. Radiation Research, 153(2), 173–180. Retrieved from
13. Liao, A. H., Chou, F. I., Kuo, Y. C., Chen, H. W., Kai, J. J., Chang, C. W., … Hwang, J. J. (2010). Biodistribution of phenylboric acid derivative entrapped lipiodol and 4-borono-2-18F-fluoro-l-phenylalanine-fructose in GP7TB liver tumor bearing rats for BNCT. Applied Radiation and Isotopes, 68(3), 422–426.
14. Futamura, G., Kawabata, S., Nonoguchi, N., Hiramatsu, R., Toho, T., Tanaka, H., … Miyatake, S. I. (2017). Evaluation of a novel sodium borocaptate-containing unnatural amino acid as a boron delivery agent for neutron capture therapy of the F98 rat glioma. Radiation Oncology, 12(1), 1–11.
15. Otersen, B., Haritz, D., Grochulla, F., Bergmann, M., Sierralta, W., & Gabel, D. (1997). Binding and distribution of Na2B12H11SH on cellular and subcellular level in tumor tissue of glioma patients in boron neutron capture therapy. Journal of Neuro-Oncology, 33(1–2), 131–139.
16. R.F., B., M.G.H., V., O.K., H., W.S., K. I. I. I., K.J., R., P.J., B., … S., K. (2012). Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiation Oncology, 7(1), 1–21.
17. Luderer, M. J., De La Puente, P., & Azab, A. K. (2015). Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy. Pharmaceutical Research, 32(9), 2824–2836.
18. Barth, R. F. (2015). From the laboratory to the clinic: How translational studies in animals have lead to clinical advances in boron neutron capture therapy. Applied Radiation and Isotopes, 106, 22–28.
19. Hawthorne, M. F., & Lee, M. W. (2003). A critical assessment of boron target compounds for boron neutron capture therapy. Journal of Neuro-Oncology, 62(1–2), 33–45.
20. Coderre, J. A., Ph, D., Turcotte, J. C., Riley, K. J., Ph, D., Binns, P. J., … Ph, D. (2003). Boron Neutron Capture Therapy : Cellular Targeting of High Linear Energy Transfer Radiation. 2(5).
21. Bhupathiraju, N. V. S. D. K., & Grac, M. (2013). Synthesis of Carborane-Containing Porphyrin Derivatives for the Boron Neutron Capture Therapy of Tumors.
22. Barth, R. F., Yang, W., Al-madhoun, A. S., Johnsamuel, J., Byun, Y., Chandra, S., … Eriksson, S. (2004). Boron-Containing Nucleosides as Potential Delivery Agents for Neutron Capture Therapy of Brain Tumors. 6287–6295.
23. Barth, R. F., Yang, W., Nakkula, R. J., Byun, Y., Tjarks, W., Chu, L., … Riley, K. J. (2015). Evaluation of TK1 targeting carboranyl thymidine analogs as potential delivery agents for neutron capture therapy of brain tumors. Applied Radiation and Isotopes, 1–5.
24. Khalil, A., Ali, T., & Tjarks, W. (n.d.). N3-substituted thymidine bioconjugates for cancer therapy and imaging. 677–692.
25. Yang, W., Barth, R. F., Wu, G., Tjarks, W., Binns, P., & Riley, K. (2009). Boron neutron capture therapy of EGFR or EGFRvIII positive gliomas using either boronated monoclonal antibodies or epidermal growth factor as molecular targeting agents. Applied Radiation and Isotopes, 67(7-8 SUPPL.), 328–331.
26. Wu, G., Yang, W., Barth, R. F., Kawabata, S., Swindall, M., Bandyopadhyaya, A. K., … Fenstermaker, R. A. (2007). Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab. Clinical Cancer Research, 13(4), 1260–1268.
27. Azab, A. K., Srebnik, M., Doviner, V., & Rubinstein, A. (2005). Targeting normal and neoplastic tissues in the rat jejunum and colon with boronated, cationic acrylamide copolymers. Journal of Controlled Release, 106(1–2), 14–25.
28. Maitz, C. A., Khan, A. A., Kueffer, P. J., Brockman, J. D., Dixson, J., Jalisatgi, S. S., … Hawthorne, M. F. (2017). Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models. Translational Oncology, 10(4), 686–692.
29. Altieri, S., Balzi, M., Bortolussi, S., Bruschi, P., Ciani, L., Clerici, A. M., … Ristori, S. (2009). Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy. Journal of Medicinal Chemistry, 52(23), 7829–7835.
30. Kawabata, S., Miyatake, S. I., Nonoguchi, N., Hiramatsu, R., Iida, K., Miyata, S., … Ono, K. (2009). Survival benefit from boron neutron capture therapy for the newly diagnosed glioblastoma patients. Applied Radiation and Isotopes, 67(7-8 SUPPL.), 15–18.
31. Achilli, C., Grandi, S., Ciana, A., Guidetti, G. F., Malara, A., Abbonante, V., … Minetti, G. (2014). Biocompatibility of functionalized boron phosphate (BPO 4 ) nanoparticles for boron neutron capture therapy (BNCT) application. Nanomedicine: Nanotechnology, Biology, and Medicine, 10(3), 589–597.
32. Noguchi, H., Matsushita, M., Kobayashi, N., Levy, M. F., & Matsumoto, S. (2010). Recent advances in protein transduction technology. Cell Transplantation, 19(6–7), 649–654.
33. Michiue, H., Sakurai, Y., Kondo, N., Kitamatsu, M., Bin, F., Nakajima, K., … Matsui, H. (2014). The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials, 35(10), 3396–3405.
34. Meiyanto, E. (2014). Pengembangan boron carrying pharmaceuticals untuk mendukung terapi kanker berbasis bnct. 10–11.
35. Poedjomartono, B., Afkari, H., Meiyanto, E., Bangun, A. A., & Sardjono, Y. (2019). Boron Neutron Capture Therapy for Cancer: Future Prospects in Indonesia. ASEAN Journal on Science and Technology for Development, 35(3), 199–201.
36. Qodria, L., Hairunisa, I., Utomo, R. Y., Hermawan, A., & Meiyanto, E. (2019). Anti-metastatic Activity of Curcumin Analog Pentagamaboronon-0-Sorbitol Against HER2-overexpressed MCF-7 Breast Cancer Cells. Indonesian Journal of Cancer Chemoprevention, 9(3), 118.
How to Cite
Wijaya, S., Poedjomartono, B., & Sardjono, Y. (2019). In Vitro and In Vivo Test of Boron Delivery Agent for BNCT. Indonesian Journal of Physics and Nuclear Applications, 4(2), 39-44.