• Tri Nugroho Hadi Susanto
Keywords: CFD, UDF, narrow rectangular channel, plate fuel


The purpose of this study is to determine the characteristics of the cooling system on the new design of the Kartini Reactor plate fuel based on numerical calculations (Computational Fluid Dynamics). The fuel plate model was simplified and made in 3D. The model dimensions are 17.3 mm x 68 mm x 900 mm. The space between the two plates called the narrow rectangular channels has a gap of 2 mm. On these simulations a heat flux of 10612,7 watt/m2 was used which was obtained from the MCNP calculation program. Simulations were conducted in a steady state condition and single-phase model laminar flow of an incompressible fluid through the gap between the two fuel plates. This simulation uses UDF (User Define Function) to approach heat flux behaviour that follows the neutron distribution in the reactor core. The simulation results show that the maximum temperature that occur at a flow rate of 0.01 m/s was 43.5 °C.


Download data is not yet available.


Bergman T L., Lavine A S., Incropera F P., DeWitt D P., 2011, Fundamentals of Heat and Mass Transfer 6th Edition, John Wiley and Sons.
Ghione, A., Noel, B., Vinai, P., & Demazière, C. (2016). International Journal of Heat and Mass Transfer Assessment of thermal – hydraulic correlations for narrow rectangular channels with high heat flux and coolant velocity. International Journal of Heat and Mass Transfer,99,344356.
Ismu wahyono, P., 2013, Evaluasi Parameter Termohidrolika Teras Reaktor dengan Relap, Pusat Sains dan Teknologi Akselerator, Yogyakarta.
Safety Guide No. NS-G-4.4 Standards Operational Limits and Conditions and Operating Procedures for Research Reactors. International Atomic Energy Agency, Vienna, 2008.
Srivastava, R.R, Schneider, N.M., Kandlikar, S.G, Numerical Simulation Of Single Phase Liquid Flow In Narrow Rectangular Channels With Structured Roughness Walls, Proceedings of the Seventh International ASME Conference on Nanochannels, Microchannels and Minichannels ICNMM 2009
Subekti, M., Juarsa, M., Hadi Kusuma, M., 2013, Validasi Pemodelan Kode Fluent 6.3 Untuk Perhitungan Aliran Pendingin Darurat Dalam Kanal Sempit PLTN-PWR, Indonesian Journal of Nuclear Science and Technology Vol. 15, No. 2, Agustus 2014;
Syam, N.S., Widiharto, A., Rohmat, T.A., 2010, Kajian Numeris Karakteristik Perpindahan Panas pada Kolam Penyimpanan Sementara Bahan Bakar Nuklir Bekas MTR, SEMINAR NASIONAL Perkembangan Riset dan Teknologi di Bidang Industri Ke-16, p.34-39.
Tjiptono, T., 2015, Kajian Keselamatan Reaktor Kartini Dengan Bahan Bakar Plat U3Si2-Al, Laporan Teknis, PSTA, Yogyakarta.
US Departemen of Energy, Doe Fundamentals Handbook Thermodynamics, Heat Transfer, And Fluid Flow Volume 2 of 3, Washington, D.C. 20585, 1992.
Versteeg H K., Malalasekera W., 2007, An Introduction to Computational Fluid Dynamics The Finite Volume Method Second Edition, Bell & Bain Limited, Glasgow.
Zheng X., Siber li Z H., 2008, Measurement of velocity profiles in a rectangular microchannel with aspect ratio a=0.35, 951–959. http: // 10.1007/ s00348-007-0454-4
How to Cite
Susanto, T. (2019). COMPUTATIONAL FLUID DYNAMICS SIMULATION OF KARTINI REACTOR FUELED PLATE. Indonesian Journal of Physics and Nuclear Applications, 4(2), 33-38.