OPTIMIZATION DOSE BNCT OF SKIN CANCER WITH SHIELD-HIT 12A PROGRAM
DOI:
https://doi.org/10.24246/ijpna.v4i3.108-116Keywords:
BNCT, Dose, Skin Cancer, SHIELD-HIT 12A.Abstract
Study aims to determine the optimum dose of cancer therapy Boron Neutron Cancer Therapy (BNCT) in skin cancer using SHIELD-HIT 12A program. The steps taken are to define the geometry and components of the skin as the object being studied and boron-10 as the source of radiation used. The output obtained from SHIELD-HIT 12A is in the form of radiation length in each skin forming constituent of skin. Medium 1 is a bone tissue with a radiation length of 10.416 cm; medium 2 is muscle tissue with radiation length 20.089 cm; medium 3 is skin tissue with radiation length 34.25 cm and medium 4 is cancer tissue with radiation length 9.639 cm. In this study the dose of BNCT has not been detected by the SHIELD-HIT 12A program.
Downloads
References
Bavarnegin, Elham. Sadremomtaz, Alireza. Khalafi, Hossein. Kasesaz, Yaser. Golshanian, Mohadeseh. Ghods, Hossein. Ezzati, Arsalan. Keyvani, Mehdi. Haddadi, Mohammad. (2016). Measurement and simulation of the TRR BNCT beam parameters. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Vol. 830, page: 53-58.
Bassler, N. Hansen, D.C. Lühr, A. Thomsen, B. Petersen J. B. Sobolevsky, N. (2014). SHIELD-HIT 12A A Monte Carlo Particle transport Program for Ion Therapy research. Journal of Physics: Conference Series.Vol. 489, page: 8-13.
Bhowmik, Arka. Repaka, Ramjee. Mulaveesala, Ravibabu. Mishra, Subhash C. (2015). Suitability of Frequency Modulated Thermal Wave Imaging for Skin Cancer Detection-A Theoretical Prediction. Journal of Thermal Biology. Vol. 51, Page: 65-82.
Bortolussi, S. Protti, N. Ferrari, M. et al. (2018). Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. Vol. 414, page: 113-120
Braun, Ralph P. Mangana, Johanna. Goldinger, Simone. French, Lars. Dummer, Reinhard. Marghoob, Ashfaq A. (2017). Electrical Impedance Spectroscopy in Skin Cancer Diagnosis. Dermatologic Clinics. Vol. 35, page: 489-493.
Cartelli, D. Capoulat, M. E. Bergueiro, J. Gagetti, L. Suárez Anzorena, M. del Grosso, M. F. Baldo, M. Castell, W. Padulo, J. Suárez Sandín, J. C. Igarzabal, M. Erhardt, J. Mercuri, D. Minsky, D. M. Valda, A. A. Debray, M. E. Somacal, H. R. Canepa, N. Real, N. Gun, M. Herrera, M. S. Tacca, H. Kreiner, A. J. (2015). Present status of accelerator-based BNCT: Focus on developments in Argentina. Applied Radiation and Isotopes. Vol. 106, page: 18-21.
Craythorne, Emma. Al-Niami, Firas. (2017). Skin Cancer. Medicine. Vol.45, Page: 431-434.
Faião-Flores, Fernanda. Coelho, Paulo Rogério Pinto. Arruda-Neto, João Dias Toledo. Maria Engler, Silvya Stuchi. Maria, Durvanei Augusto. (2013). Cell cycle arrest, extracellular matrix changes and intrinsic apoptosis in human melanoma cells are induced by Boron Neutron Capture Therapy. Toxicology in Vitro. Vol. 27, page: 1196-1204.
Faqqiyyah, H. Sardjono, Y. Bassler, Niels. (2014). The Application of SHIELD-HIT 12A Computer Code To Calculate of Absorption Dose for Invitro and Invivo Test in BNCT. Page: 10-11.
Gadan, M. A. González, S. J. Batalla, M. Olivera, M. S. Policastro, L. Sztejnberg, M. L. (2015). Reprint of Application of BNCT to the treatment of HER2+ breast cancer recurrences: Research and developments in Argentina. Applied Radiation and Isotope. Vol. 113, page: 260-264.
Gagetti, Leonardo. Anzorena, Manuel Suarez. Bertolo, Alma. del Grosso, Mariela. Kreiner, Andrés J. (2017). Proton irradiation of beryllium deposits on different candidate materials to be used as a neutron production target for accelerator-based BNCT. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Vol. 874, page: 28-34.
Glazer, Alex M. Rigel, Darrell S. Winkelmann, Richard R. Farberg, Aaron S. (2017). Clinical Diagnosis of Skin Cancer: Enhancing Inspection and Early Recognition. Dermatologic Clinics. Vol. 35, page: 409-416.
Guan, Xingcai. Manabe, Masanobu. Tamaki, Shingo. Liu, Shuangtong. Sato, Fuminobu. Murata, Isao. Wang, Tieshan. (2016). Experimental study on the performance of an epithermal neutron flux monitor for BNCT. Applied Radiation and Isotope. Vol. 113, page: 28-32.
Haroon, Attiya. Shafi, Shahram. Rao, Babar K. (2017). Using Reflectance Confocal Microscopy in Skin Cancer Diagnosis. Dermatologic Clinics. Vol. 35, page: 457-464.
Hassanpour, Seyed Hossein. Dehghani, Mohammadamin. (2017). Review of cancer from perspective of molecular. Journal of Cancer Research and Practice. Vol. 4, page: 127-129.
Karaoglu, Ayse. Arce, Pedro. Obradors, Diego. Lagares, Juan I. Unak, Perihan. (2017). Calculation by GAMOS/GEANT4 simulation of cellular energy distributions from alpha and lithium-7 particles created by BNCT. Applied Radiation and Isotopes. Page: 1-6.
Kasesaz, Y. Bavarnegin, E. Golshanian, M. Khajeali, A. Jarahi, H. Mirvakili, S. M. Khalafi, H. (2016). BNCT project at Tehran Research Reactor: Current and Prospective Plans. Progress in Nuclear Energy. Vol. 91, page: 107-115.
Kasesaz, Y. Rahmani, F. Khalafi, H. (2015). Feasibility study of using laser-generated neutron beam for BNCT. Applied Radiation and Isotopes. Vol. 103, page: 173-176.
Kreiner, Andres Juan. Bergueiro, Javier. Cartelli, Daniel. Baldo, Matias. Castell, Walter. Asoia, Javier Gomez. Padulo, Javier. Suárez Sandín, Juan Carlos. Igarzabal, Marcelo. Erhardt, Julian. Mercuri, Daniel. Valda, Alejandro A. Minsky, Daniel M. Debray, Mario E. Somacal, Hector R. Capoulat, María Eugenia. Herrera, María S. del Grosso, Mariela F. Gagetti, Leonardo. Anzorena, Manuel Suarez. Canepa, Nicolas. Real, Nicolas. Gun, Marcelo. Tacca, Hernán. (2016). Present status of Accelerator-Based BNCT. Reports of Practical Oncology and Radiotherapy. Vol. 21, page: 95-101
Masoudi, S. Farhad. Rasouli, Fatemeh S. Ghasemi, Marjan. (2017). BNCT of skin tumors using the high-energy D-T neutrons. Applied Radiation and Isotopes. Vol. 122, page: 158-163.
Musacchio González, Elizabeth Martín Hernández, Guido. (2017). An Accelerator-Based Boron Neutron Capture Therapy (BNCT) Facility Based on The 7Li (p,n) 7Be. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Vol. 865, page: 148-151.
Norbury, John W. Slaba, Tony C. Sobolevsky, Nikolai. Reddell, Brandon. (2017). Comparing HZETRN, SHIED, FLUKA and GEANT transport codes. Life Sciences in Space Research. Vol. 14, page: 64-73.
Payudan, Aniti. Aziz, Abdullah Nur. Sardjono, Yohannes. (2016). Basic Principle Application and Technology of Boron Neutron Capture Cancer Therapy ( BNCT ) Utilizing Monte Carlo N Particle 5 ’ S Software ( MCNP 5 ) with Compact Neutron Generator ( CNG ). Page: 20- 33.
Porter, Kimberly R. Chao, Chun. Quinn, Virginia P. Hsu, Jin Wen Y. Jacobsen, Steven J. (2014). Variability in date of prostate cancer diagnosis: A comparison of cancer registry, pathology report, and electronic health data sources. Annals of Epidemiology. Vol. 24, page: 855- 860.
Rosidah, Siti. Sardjono, Yohannes. Sumardi, Yosaphat.(2017). Dose Analysis of Boron Neutron Capture Therapy (BNCT) At Skin Cancer Melanoma Using MCNPX With Neutron Source From Thermal Column of Kartini. Vol. 2, Page: 111-123.
Sari, Nur Endah. Sardjono, Yohannes. Widiharto, Andang. (2017). Analysis of Radiation Effects on Workers and Environment Pilot Plant Boron Neutron Capture Therapy ( BNCT ). Vol. 2, page: 75-82.
Setyadi, Ahdika. Sardjono, Yohannes. Darmawan, Denny. (2016). The Dose of Boron Neutron Capture Therapy (BNCT) toward Skin Cancer (Melanoma Maligna) using MCNPX-CODE with Neutron Source from Kartini Reactor Beamport.
Shih, Sophy TF. Carter, Rob. Heward, Sue. Sinclair, Craig. (2017). Economic evaluation of future skin cancer prevention in Australia. Preventive Medicine. Vol. 99, page: 7-12.
Sinz Christoph, Tschandl Philipp, Rosendahl Cliff, Akay Bengu Nisa, Argenziano Giuseppe, Blum Andreas, Braun Ralph P, Cabo Horacio, et al. (2017). Accuracy of dermatoscopy for the diagnosis of nonpigmented cancers of the skin. Journal of the American Academy of Dermatology. Vol. 77, page: 1100-1109.
Taasti, Vicki Trier. Knudsen, Helge. Holzscheiter, Michael H. Sobolevsky, Nikolai. Thomsen, Bjarne. Bassler, Niels. (2015). Antiproton annihilation physics in the Monte Carlo particle transport code SHIELD-HIT12A. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. Vol. 347, page: 65-71.
Takada, Kenta. Kumada, Hiroaki. Liem, Peng Hong. Sakurai, Hideyuki. Sakae, Takeji. (2016). Development of Monte Carlo-based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy. Physica Medica. Vol. 32, page: 1846-1851.
Togsverd-Bo, Katrine. Philipsen, Peter Alshede. Hædersdal, Merete. Wulf, Hans Christian Olsen. (2018). Skin autofluorescence reflects individual seasonal UV exposure, skin photodamage and skin cancer development in organ transplant recipients. Journal of Photochemistry and Photobiology B: Biology. Vol.178, page: 577 583.
Walocko, Frances M. Tejasvi, Trilokraj. (2017). Teledermatology Applications in Skin Cancer Diagnosis. Dermatologic Clinics. Vol. 35, page: 559-563.
Wang, David M. Morgan, Frederick C. Besaw, Robert J. Schmults, Chrysalyne D. (2017). An ecological study of skin biopsies and skin cancer treatment procedures in the United States Medicare population, 2000 to 2015. Journal of the American Academy of Dermatology.
World Health Organization (2017). http://www.who.int/mediacentre/factsheets/fs297/en/ Accessed on: 30 January 2018.
Zhao, Jian Ahua. Zeng, Haishan. Kalia, Sunil. Lui, Harvey. (2017). Using Raman Spectroscopy to Detect and Diagnose Skin Cancer In Vivo. Dermatologic Clinics. Vol. 35, Page : 495-504.
Downloads
Published
How to Cite
Issue
Section
License
Indonesian Journal of Physics and Nuclear Applications is licensed under a Creative Commons Attribution 4.0 International License.