Analisis Perbedaan Indeks Vegetasi Normalized Difference Vegetation Index (NDVI) dan Normalized Burn Ratio (NBR) Kabupaten Pelalawan Menggunakan Citra Satelit Landsat 8

  • Valentino Kevin Sitanayah Que Magister Sistem Informasi Universitas Kristen Satya Wacana Salatiga
  • Sri Yulianto Joko Prasetyo Magister Sistem Informasi Universitas Kristen Satya Wacana Salatiga
  • Charitas Fibriani Magister Sistem Informasi Universitas Kristen Satya Wacana Salatiga
Keywords: Vegetation Index, NDVI, NBR, Landsat 8

Abstract

Indonesia became one of the various countries that experienced a forest fire disaster and became the second highest country to lose forests after Brazil was ranked first according to FRA. The purpose of this study is to see changes and differences in the value of vegetation index on forest / burned land in Pelalawan District, Riau Province. The method used in this study is remote sensing analysis, namely the vegetation index Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR). Fire statistics are obtained from riau.bps.go.id and the research data uses Landsat 8 OLI Satellite Imagery.The results of the study found that the NDVI vegetation index value was higher than the NBR vegetation index value, which meant that the NDVI vegetation index in Pelalawan District was classified as good but many areas were burnt and caused considerable losses. NDVI and NBR vegetation index values ​​at 3 time periods experienced a not significant increase and decrease. Pelalawan Regency is at the NBR vegetation index value of 0.123 - 0.529 and the vegetation index value of NDVI at 3 time periods is said to be large with the highest values ​​of 0.448 - 0.543 (> 0.4 good vegetation) which are classified as warm area forests and tropical rain forests. The area of ​​the burning area is at the highest moderate level (moderate-high), which is on 17 November 2016 covering an area of ​​522.708 hectares or almost half of the area of ​​Pelalawan District.

Downloads

Download data is not yet available.

References

Susanto, A 2015, Apa yang paling banyak menyebabkan kebakaran hutan di Indonesia?, Rappler, dilihat 2 November 2018, https://www.rappler.com/indonesia/104764-kebakaran-hutan-indonesia-cifor.

Badan Pusat Statistik Provinsi Riau Dalam Angka. Riau, 2016.

Badan Pusat Statistik Provinsi Riau, Data Kebakaran Hutan dan Lahan di Provinsi Riau, 2016.

Wirawan, J 2016, Kabut asap selimuti Pekanbaru hingga Singapura, BBC, dilihat 2 November 2018, https://www.bbc.com/indonesia/berita_indonesia/2016/08/160826_indonesia_asap_pekanbaru_singapura.

Cipto, H 2016, Setiap Tahun, Hutan Indonesia Hilang 684.000 Hektar, Kompas.com, dilihat 2 November 2018, https://regional.kompas.com/read/2016/08/30/15362721/setiap.tahun.hutan.indonesia.hilang.684.000.hektar.

Lillesand, TM & Kiefer, RW 1994, Penginderaan Jauh dan Interpretasi Citra, Gadjah Mada University Press, Yogyakarta.

Purwadhi, FSH & Sanjoto, TB 2008, Pengantar Interpretasi Citra Penginderaan Jauh, LAPAN, Jakarta.

Burrough, PA & McDonnell, RA 1998, Principles of Geographical Information Systems, Oxford University Press, New York.

Ibrahimi, AA & Handayani, HH 2013, ‘Aplikasi Penginderaan Jauh untuk Memetakan Kekeringan Lahan dengan Metode Temperature Vegetation Dryness Index (TVDI) Studi Kasus : TN Bromo Tengger Semeru)’, Jurnal Teknik Pomits, vol. 10, no. 10, hh.

Cocke, AE, Fule, PZ & Crouse, JE 2005, ‘Comparison of Burn Severity Assessments using Differenced Normalized Burn Ratio and Ground Data’, International Journal of Wildland Fire, vol. 14, hh. 189-198.

Parwati, Zubaidah, A, Vetrita, Y, Yulianto, F, Sukowati, KAD & Khomarudin MR 2012, ‘Kapasitas Indeks Lahan Terbakar Normalized Burn Ratio (NBR) dan Normalized Difference Vegetation Index (NDVI) Dalam Mengidentifikasi Bekas Lahan Terbakar Berdasarkan Data SPOT-4’, Jurnal Ilmiah Geomatika, vol. 18, no. 1, hh. 29-41.

Zubaidah, A, Sulma, A, Suwarsono, Vetrita, Y, Priyatna, M & Sukowati, KAD 2017, ‘Akurasi Luas Areal Kebakaran dari Data Landsat-8 OLI di Wilayah Kalimantan’, Majalah Ilmiah Globe, vol. 19, no. 1, hh.21-32.

Hanif, M 2015, Bahan Pelatihan Penginderaan Jauh Tingkat Lanjut, Scribd, dilihat 2 November 2018, https://www.scribd.com/doc/269776350/BEBERAPA-JENIS-INDEKS-VEGETASI-pdf.

Huete, A, Justice, C & Leeuwen, VW 1999, Modis Vegetation Index (MOD 13) Algorithm Theoretical Basis Document, Department of Environmental Sciences, Charlottesville, Virginia.

Humboldt State Geospatial, Normalized Burn Ratio, Humboldt State University, dilihat 2 November 2018, http://gsp.humboldt.edu/olm_2015/Courses/GSP_216_Online/lesson5-1/NBR.html.

Key, CH & Benson, NC 2002, Measuring and Remote Sensing of Burn Severity, U.S Geological Survey Wildland Fire Workshop, Los Alamos.

Eidenshink, J, Schwind, B, Brewer, K, Zhu ZL, Quayle, B & Howard S 2007, A Project for Monitoring Trends in Burn Severity, Fire Ecology Spesial Issue, vol. 3, no. 1, hh. 3-21.

Sitangggang, G 2010, ‘Kajian Pemanfaatan Satelit Masa Depan Sistem Penginderaan Jauh Satelit LDCM (Landsat-8)’, Berita Dirgantara LAPAN, vol. 11, no. 2, hh. 47-58.

Septiana, E 2015, Kombinasi Band Citra Landsat 8, Info-Geospasial, dilihat 2 November 2018, http://www.info-geospasial.com/2015/07/kombinasi-band-citra-landsat-8.html.
Published
2019-06-03
How to Cite
Que, V., Prasetyo, S., & Fibriani, C. (2019). Analisis Perbedaan Indeks Vegetasi Normalized Difference Vegetation Index (NDVI) dan Normalized Burn Ratio (NBR) Kabupaten Pelalawan Menggunakan Citra Satelit Landsat 8. Indonesian Journal of Computing and Modeling, 2(1), 1-7. Retrieved from https://ejournal.uksw.edu/icm/article/view/2534
Section
Articles