Convolutional Neural Network untuk mengklasifikasi tingkat keparahan jerawat

Authors

DOI:

https://doi.org/10.24246/aiti.v20i2.167-176

Keywords:

Acne, CNN, Deep Learning

Abstract

Classification is one of the methods used in medical science, especially for the early detection or classify the disease types. In skin health, classification can be used to predict the type and severity of acne so that the treatment can be determined. This study aims to develop a classification model for the type and severity of acne using Deep Learning with a Convolutional Neural Network (CNN). The labels used in the training data consist of levels 0, 1, and 2, which represent the severity of acne. The classifier model was developed using secondary data from www.kaggle.com with 500 images for each label. The optimizer used in this study was ADAM by comparing the number of epochs starting from 50, 80, and up to 100. The accuracy results in the training data obtained were 0.6363, 0.8783, and 0.9234, respectively.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

P. Studi Keperawatan dan Pendidikan Ners and I. Rahmayunia Kartika, “Survey Pemanfaatan Teknologi Informasi Dalam Pembelajaran Mahasiswa Keperawatan,” REAL in Nursing Journal, vol. 3, no. 1, pp. 40–48, May 2020, doi: 10.32883/RNJ.V3I1.765.

S. Wahyuni, M. Megasari, and Y. Puspitarini, “Pengaruh Pemanfaatan “PROGRAM SHIFA “ (Media Promosi Kesehatan Berbasis IT yaitu SMS Broadcast Tentang Kepatuhan Diet) pada Penderita Diabetes Melitus Tipe 2 di Rumah Sakit Dustira,” Jurnal Kesehatan Budi Luhur : Jurnal Ilmu-Ilmu Kesehatan Masyarakat, Keperawatan, dan Kebidanan, vol. 12, no. 2, pp. 197–201, Aug. 2019, Accessed: May 02, 2023. [Online]. Available: http://jurnal.stikesbudiluhurcimahi.ac.id/index.php/jkbl/article/view/70

S. Roy et al., “Deep Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound,” IEEE Trans Med Imaging, vol. 39, no. 8, pp. 2676–2687, Aug. 2020, doi: 10.1109/TMI.2020.2994459.

U. Ramos, M. E. Stivanello, and M. R. Stemmer, “Adaptable Architecture for the Development of Computer Vision Systems in FPGA,” IEEE Latin America Transactions, vol. 18, no. 12, pp. 2104–2111, Dec. 2020, doi: 10.1109/TLA.2020.9400438.

E. Naf’an, F. Islami, and G. Gushelmi, “Implementasi Deep Learning Dalam Pendeteksian Kerumunan Yang Berpotensi Melanggar Protokol Kesehatan Covid-19,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 2, pp. 821–826, Apr. 2022, doi: 10.30865/MIB.V6I2.3484.

B. Khufa Rahmada Aula, C. Fatichah, and D. Purwitasari, “Sistem Rekomendasi pada Forum Kesehatan dengan Pemeringkatan Pertanyaan Serupa Menggunakan Pendekatan Deep Learning,” The Journal on Machine Learning and Computational Intelligence (JMLCI), vol. 1, no. 1, Dec. 2021, Accessed: May 02, 2023. [Online]. Available: https://jmlci.unesa.ac.id/index.php/home/article/view/1

S. A. Kawa and M. A. Wani, “Designing Convolution Neural Network Architecture by utilizing the Complexity Model of the Dataset,” Proceedings of the 2022 9th International Conference on Computing for Sustainable Global Development, INDIACom 2022, pp. 221–225, 2022, doi: 10.23919/INDIACOM54597.2022.9763256.

J. Aguilar et al., “Towards the Development of an Acne-Scar Risk Assessment Tool Using Deep Learning,” 2022 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2022, 2022, doi: 10.1109/ROPEC55836.2022.10018763.

N. Pancholi, S. Goel, R. Nijhawan, and S. Gupta, “Classification and Detection of Acne on the Skin using Deep Learning Algorithms,” pp. 110–114, Mar. 2022, doi: 10.1109/OCIT53463.2021.00032.

D. E. Branisteanu et al., “Adult female acne: Clinical and therapeutic particularities (Review),” Exp Ther Med, vol. 23, no. 2, pp. 1–7, Feb. 2022, doi: 10.3892/ETM.2021.11074.

J. Arifianto, “Aplikasi Web Pendeteksi Jerawat Pada Wajah Menggunakan Model Deep Learning Dengan Tensorflow,” Jan. 2022, Accessed: May 02, 2023. [Online]. Available: https://dspace.uii.ac.id/handle/123456789/37886

P. B. N. Setio, D. R. S. Saputro, and B. Winarno, “Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.5,” PRISMA, Prosiding Seminar Nasional Matematika, vol. 3, pp. 64–71, Feb. 2020, Accessed: May 02, 2023. [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/article/view/37650

R. T. Lestari et al., “Perilaku Mahasiswa Terkait Cara Mengatasi Jerawat,” Jurnal Farmasi Komunitas, vol. 8, no. 1, pp. 15–19, Oct. 2021, doi: 10.20473/JFK.V8I1.21922.

Y. A. Hasma and W. Silfianti, “Implementasi Deep Learning Menggunakan Framework Tensorflow dengan Metode Faster Regional Convolutional Neural Network untuk Pendeteksian Jerawat,” Jurnal Ilmiah Teknologi dan Rekayasa, vol. 23, no. 2, pp. 89–102, Mar. 2020, doi: 10.35760/TR.2018.V23I2.2459.

R. L. Hasanah and M. Hasan, “Deteksi Lesi Acne Vulgaris pada Citra Jerawat Wajah Menggunakan Metode K-Means Clustering,” Indonesian Journal on Software Engineering (IJSE), vol. 8, no. 1, pp. 46–51, Jun. 2022, doi: 10.31294/IJSE.V8I1.12966.

Y. F. Achmad, A. Yulfitri, and M. B. Ulum, “Identifikasi Jenis Jerawat Berdasarkan Tekstur Menggunakan GLCM dan Backpropagation,” Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), vol. 20, no. 2, pp. 139–146, Oct. 2021, doi: 10.53513/JIS.V20I2.4747.

M. Ramadhani, S. Suprayogi, and H. B. Dyah, “Klasifikasi Jenis Jerawat Berdasarkan Tekstur Dengan Menggunakan Metode Glcm,” eProceedings of Engineering, vol. 5, no. 1, Apr. 2018, Accessed: May 03, 2023. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/6049

K. Karuniawaty Pakpahan, R. R. Yacoub, E. Kusumawardhani, J. Marpaung, and I. Fitri, “Klasifikasi Penyebab Jerawat Berdasarkan Area pada Wajah Menggunakan Metode Gray Level Co-Occurrence Matrix (GlCM),” Jurnal Teknik Elektro Universitas Tanjungpura, vol. 2, no. 1, Aug. 2022, Accessed: May 03, 2023. [Online]. Available: https://jurnal.untan.ac.id/index.php/jteuntan/article/view/57088

P. I. Dewi and A. Musdholifah, “Klasifikasi Jenis Jerawat Menggunakan Support Vector Machine Berdasarkan Hasil Ekstraksi Tekstur Gray-Level Co-Occurrence Matrix,” Universitas Gadjah Mada, Yogyakarta, 2020. Accessed: May 03, 2023. [Online]. Available: http://etd.repository.ugm.ac.id/penelitian/detail/185523

K. Naidu, O. Kareppa, S. Menon, C. Bhole, and S. Poojary, “Dermato: A Deep Learning based Application for Acne Subtype and Severity Detection,” International Conference on Innovative Data Communication Technologies and Application, ICIDCA 2023 - Proceedings, pp. 569–574, 2023, doi: 10.1109/ICIDCA56705.2023.10100165.

G. Dhande and Z. Shaikh, “Analysis of epochs in environment based neural networks speech recognition system,” Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI 2019, pp. 605–608, Apr. 2019, doi: 10.1109/ICOEI.2019.8862728.

N. Z. Munantri, H. Sofyan, and M. Y. Florestiyanto, “Aplikasi Pengolahan Citra Digital Untuk Identifikasi Umur Pohon,” Telematika : Jurnal Informatika dan Teknologi Informasi, vol. 16, no. 2, pp. 97–104, Jan. 2020, doi: 10.31315/TELEMATIKA.V16I2.3183.

R. L. Hasanah, Y. Rianto, and D. Riana, “Identification of Acne Vulgaris Type in Facial Acne Images Using GLCM Feature Extraction and Extreme Learning Machine Algorithm,” Rekayasa, vol. 15, no. 2, pp. 204–214, Aug. 2022, doi: 10.21107/REKAYASA.V15I2.14580.

V. H. Phung and E. J. Rhee, “A High-Accuracy Model Average Ensemble of Convolutional Neural Networks for Classification of Cloud Image Patches on Small Datasets,” Applied Sciences 2019, Vol. 9, Page 4500, vol. 9, no. 21, p. 4500, Oct. 2019, doi: 10.3390/APP9214500.

P. A. Nugroho, I. Fenriana, and R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) pada Ekspresi Manusia,” ALGOR, vol. 2, no. 1, pp. 12–20, Nov. 2020, Accessed: May 03, 2023. [Online]. Available: https://jurnal.buddhidharma.ac.id/index.php/algor/article/view/441

F. Nashrullah, S. A. Wibowo, and G. Budiman, “The Investigation of Epoch Parameters in ResNet-50 Architecture for Pornographic Classification,” Journal of Computer, Electronic, and Telecommunication (COMPLETE), vol. 1, no. 1, Jul. 2020, doi: 10.52435/COMPLETE.V1I1.51.

Published

2023-08-25

How to Cite

[1]
R. Rianto and D. Risdho Listianto, “Convolutional Neural Network untuk mengklasifikasi tingkat keparahan jerawat”, AITI, vol. 20, no. 2, pp. 167–176, Aug. 2023.

Issue

Section

Articles