Implementasi analisis sentimen pada ulasan aplikasi Duolingo di Google Playstore menggunakan algoritma Naïve Bayes

Authors

  • Meli Apriliyani Mahasiswa
  • Mirza Izzal Musyaffaq Program Studi Teknologi Informasi, Fakultas Sains dan Teknologi, UIN Walisongo Semarang
  • Siti Nur’Aini Program Studi Teknologi Informasi, Fakultas Sains dan Teknologi, UIN Walisongo Semarang https://orcid.org/0000-0003-1702-145X
  • Maya Rini Handayani Program Studi Teknologi Informasi, Fakultas Sains dan Teknologi, UIN Walisongo Semarang https://orcid.org/0009-0006-8057-0995
  • Khotibul Umam Program Studi Teknologi Informasi, Fakultas Sains dan Teknologi, UIN Walisongo Semarang

DOI:

https://doi.org/10.24246/aiti.v21i2.298-311

Keywords:

Duolingo App, Naïve Bayes, sentiment analysis

Abstract

This study investigates sentiment analysis to evaluate the Duolingo Application using the Naive Bayes method. The Duolingo program exemplifies the use of big data technology for processing vast and complex data. Google Play Store offers review and rating functions that can help with program development and fixing undesirable aspects. This project uses sentiment analysis techniques to automatically analyze Indonesian internet product reviews and obtain information about the feelings expressed in these reviews. The Naïve Bayes method is used to classify reviews as positive or negative. The research findings show that a dataset consisting of 1000 pieces of data originating from reviews of the Duolingo program on the Google Play Store was manually labeled before the preprocessing step. Of this number, 500 data have positive sentiments, while 500 have negative attitudes. Additionally, sentiment analysis shows an accuracy rate of 86%. The f1 score precision is 89% and recall 83% values, with f1 results for classification of 86%.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

N. Agustina, D. H. Citra, W. Purnama, C. Nisa, and A. R. Kurnia, “Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 1, pp. 47–54, 2022, doi: 10.57152/malcom.v2i1.195. DOI: https://doi.org/10.57152/malcom.v2i1.195

S. Chohan, A. Nugroho, A. M. B. Aji, and W. Gata, “Analisis Sentimen Pengguna Aplikasi Duolingo Menggunakan Metode Naïve Bayes dan Synthetic Minority Over Sampling Technique,” Paradig. - J. Komput. dan Inform., vol. 22, no. 2, pp. 139–144, 2020, doi: 10.31294/p.v22i2.8251. DOI: https://doi.org/10.31294/p.v22i2.8251

A. Nurian, “Analisis Sentimen Ulasan Pengguna Aplikasi Google Play Menggunakan Naïve Bayes,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3s1, pp. 829–835, 2023, doi: 10.23960/jitet.v11i3s1.3348. DOI: https://doi.org/10.23960/jitet.v11i3s1.3348

E. Indrayuni, “Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes,” J. Khatulistiwa Inform., vol. 7, no. 1, pp. 29–36, 2019, doi: 10.31294/jki.v7i1.1. DOI: https://doi.org/10.31294/jki.v7i1.1

A. K. Dewi, “Analisis Sentimen Ekspedisi Sicepat Dari Ulasan Google Play Mennggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 796–805, 2022, doi: 10.35957/jatisi.v9i2.1802. DOI: https://doi.org/10.35957/jatisi.v9i2.1802

L. Ardiani, H. Sujaini, and T. Tursina, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak,” J. Sist. dan Teknol. Inf., vol. 8, no. 2, p. 183, 2020, doi: 10.26418/justin.v8i2.36776. DOI: https://doi.org/10.26418/justin.v8i2.36776

D. Pratmanto, R. Rousyati, F. F. Wati, A. E. Widodo, S. Suleman, and R. Wijianto, “App Review Sentiment Analysis Shopee Application in Google Play Store Using Naive Bayes Algorithm,” J. Phys. Conf. Ser., vol. 1641, no. 1, 2020, doi: 10.1088/1742-6596/1641/1/012043. DOI: https://doi.org/10.1088/1742-6596/1641/1/012043

M. K. Khoirul Insan, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023, doi: 10.36040/jati.v7i1.6373. DOI: https://doi.org/10.36040/jati.v7i1.6373

M. Birjali, M. Kasri, and A. Beni-Hssane, “A comprehensive survey on sentiment analysis: Approaches, challenges and trends,” Knowledge-Based Syst., vol. 226, p. 107134, 2021, doi: 10.1016/j.knosys.2021.107134. DOI: https://doi.org/10.1016/j.knosys.2021.107134

I. Wickramasinghe and H. Kalutarage, “Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation,” Soft Comput., vol. 25, no. 3, pp. 2277–2293, 2021, doi: 10.1007/s00500-020-05297-6. DOI: https://doi.org/10.1007/s00500-020-05297-6

P. Kaviani and S. Dhotre, “International Journal of Advance Engineering and Research Short Survey on Naive Bayes Algorithm,” Int. J. Adv. Eng. Res. Dev., vol. 4, no. 11, pp. 607–611, 2017. DOI: https://doi.org/10.21090/IJAERD.40826

N. A. Rakhmawati, M. I. Aditama, R. I. Pratama, and K. H. U. Wiwaha, “Analisis Klasifikasi Sentimen Pengguna Media Sosial Twitter Terhadap Pengadaan Vaksin COVID-19,” J. Inf. Eng. Educ. Technol., vol. 4, no. 2, pp. 90–92, 2020, doi: 10.26740/jieet.v4n2.p90-92. DOI: https://doi.org/10.26740/jieet.v4n2.p90-92

S. Lestari and S. Saepudin, “Analisis Sentimen Vaksin Sinovac Pada Twitter Menggunakan Algoritma Naive Bayes,” SISMATIK (Seminar Nas. Sist. Inf. dan Manaj. Inform., pp. 163–170, 2021.

A. Imron, “Analisis Sentimen Terhadap Tempat Wisata di Kabupaten Rembang Menggunakan Metode Naive Bayes Classifier,” Tek. Inform., pp. 10–13, 2019, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/14268

G. Sanjaya and K. M. Lhaksmana, “Lexicon Based ).,” vol. 7, no. 3, pp. 9698–9710, 2020.

F. Bei and S. Sudin, “Analisis Sentimen Aplikasi Tiket Online Di Play Store Menggunakan Metode Support Vector Machine (Svm),” Sismatik, vol. 01, no. 01, pp. 91–97, 2021.

J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36. DOI: https://doi.org/10.52985/insyst.v1i1.36

A. Tangkelayuk, “The Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 1109–1119, 2022, doi: 10.35957/jatisi.v9i2.2048. DOI: https://doi.org/10.35957/jatisi.v9i2.2048

R. R. Syawal, L. Pratama, T. Wahyuni, and D. G. Passa, “Klasifikasi kualitas Ikan Nilem Berdasarkan Ukuran Menggunakan Algoritma Naive Bayes,” J I M P - J. Inform. Merdeka Pasuruan, vol. 7, no. 2, p. 72, 2023, doi: 10.51213/jimp.v7i2.514. DOI: https://doi.org/10.51213/jimp.v7i2.514

A. Nuzulia, “済無No Title No Title No Title,” Angew. Chemie Int. Ed. 6(11), 951–952., no. 2015, pp. 5–24, 1967. DOI: https://doi.org/10.1002/anie.196709511

H. K. Wardana, I. Swanita, and B. W. Yohanes, “Sistem Pemeriksa Pola Kalimat Bahasa Indonesia berbasis Algoritme Left-Corner Parsing dengan Stemming,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 3, p. 211, 2019, doi: 10.22146/jnteti.v8i3.515. DOI: https://doi.org/10.22146/jnteti.v8i3.515

Published

2024-09-30

How to Cite

[1]
M. Apriliyani, M. I. Musyaffaq, S. Nur’Aini, M. R. Handayani, and K. Umam, “Implementasi analisis sentimen pada ulasan aplikasi Duolingo di Google Playstore menggunakan algoritma Naïve Bayes ”, AITI, vol. 21, no. 2, pp. 298–311, Sep. 2024.

Issue

Section

Articles