Sorption isotherm modeling of “gaplek” flour fortified by protein from red bead tree flour

  • Margareta Novian Cahyanti Department of Chemistry, Universitas Kristen Satya Wacana
  • Alvama Pattiserlihun Department of Physics and Physics Education, Universitas Kristen Satya Wacana
Keywords: BET, Caurie, GAB, gaplek, isotherm, red bead three

Abstract

The objective of the study is to determine the characteristic of moisture sorption isotherm from "gaplek" flour fortified with protein from red bead tree flour using various modeling and being observed from the monolayer moisture content and its absorption types. This research used 5 salt solutions and storage temperature of 298K, 308K, and 318K. The models used were Brunauer-Emmet-Teller (BET), Guggenheim-Anderson-de Boer (GAB) and Caurie model. The monolayer moisture content was around 5.07 – 8.53% db. kb value of GAB model was around 0.5941-0.6252. c value of GAB model was around 16.0588-23.4111. C value of BET was around 32.7241-306.5000. Whereas the c value in Caurie model was around 1.1419-1.2769. The equilibrium and monolayer moisture content on ‘gaplek" flour fortified with protein from red bead tree flour was decreasing as the temperature going up. GAB constant value indicated that the process of moisture absorption on the "gaplek" flour fortified with protein from red bead tree flour categorized in type II.

Downloads

Download data is not yet available.

References

Adawiyah, D. R., & Soekarto, S. T. (2010). Modelling of moisture sorption isotherm in food model. Jurnal Teknologi dan Industri Pangan, 21(1), 33–39.

Alfiah, M. N., Hartini, S., & Cahyanti, M. N. (2017). Mathematical models and thermodynamic properties of moisture sorption isotherms of fermented cassava flour by red yeast rice. Alchemy, 13(1), 29–40, doi: 10.20961/alchemy.v13i1.4326.

Basu, S., Shivhare, U. S., & Mujumdar, A. S. (2006). Model for sorption isotherm for food: A review. Drying Technology, 24(8), 917–930, doi: 10.1080/07373930600775979.

Blahovec, J. (2004). Sorption isotherms in materials of biological origin mathematical and physical approach. Journal of Food Engineering, 65(4), 489–495, doi: 10.1016/j.jfoodeng.2004.02.012.

Budijanto, S., Sitanggang, A. B., & Kartika, Y. D. (2010). Shelf life study of tortilla using accelerated shelf life testing (ASLT) method and its mathematical modeling of moisture. Jurnal Teknologi dan Industri Pangan, 21(2), 165–170.

Červenka, L. 2008. Adsorption of moisture on dried juniper berries (Juniperus communis L.) at various temperatures and properties of sorbed water. Journal of Food and Nutrition Research, 47(3), 131–138

Chowdhury, M. M. I, Huda, M. D, Hosain, M. A., & Hassan, M. S. (2006). Moisture sorption isotherms for mungbean (Vigna radiata L). Journal of Food Engineering, 74(4), 462–467, doi: 10.1016/j.jfoodeng.2005.03.036.

Dalgıç, A. C., Pekmez, H., & Belibağlı, K. B. (2012). Effect of drying methods on the moisture sorption isotherms and thermodynamic properties of mint leaves. Journal of Food Science and Technology, 49(4), 439–449, doi: 10.1007/s13197-011-0302-7

Erbaş, M., Aykın, E., Arslan, S., & Durak, A. N. (2016). Adsorption behaviour of bulgur. Food Chemistry, 195, 87–90, doi: 10.1016/j.foodchem.2015.06.050

Koua, B. K, Koffi, P. M, Gbaha, P, & Toure, S. (2014). Thermodynamic analysis of sorption isotherms of cassava (Manihot esculenta). Journal of Food Science and Technology, 51(9), 1711–1723, doi: https://doi.org/10.1007/s13197-012-0687-y.

Lomauro, C. J., Bakshi, A. S., & Labuza, T. P. (1985). Evaluation of food moisture sorption isotherm equations. Part I: Fruit, vegetable and meat products. Lebensmittel-Wissenschaft und Technologie, 18(2), 111–117.

Maidawati, N. (2011). The utilization of red bead tree (Adenanthera Pavonina Linn.) flour on the optimization of dried cassava flour enriched of protein as ingredient to substitution In wheat flour (Unpublished undergraduate thesis). Universitas Kristen Satya Wacana.

Rakshit, M., Moktan, B., Hossain, S. A., & Sarkar, P.K. (2014). Moisture sorption characteristics of wadi, a legume-based traditional condiment. Journal of Food Science and Technology, 51(2), 301–307, doi: https://doi.org/10.1007/s13197-011-0491-0.

Sanni L. O., Atere, C., Kuye, A. (1997). Moisture sorption isotherms of fufu and tapioca at different temperatures. Journal of Food Engineering 34(2), 203–212, doi: 10.1016/S0260-8774(97)00072-1.

Sobolawe, S. S., Oke, M. O., Odunmbaku, L. A., & Adebo, O. A. (2017). Equilibrium sorption isotherms of moringa oleifera leaves at different temperatures. African Journal of Science, Technology, Innovation and Development, 9(1), 61–68, doi: 10.1080/20421338.2016.1263435

Suprapti, L. (2005). Tepung Tapioka Pembuatan dan Pemanfaatannya. Yogyakarta: Kanisius.
Published
2018-07-16
How to Cite
Cahyanti, M., & Pattiserlihun, A. (2018). Sorption isotherm modeling of “gaplek” flour fortified by protein from red bead tree flour. Journal of Science & Science Education, 2(1), 1-6. https://doi.org/https://doi.org/10.24246/josse.v2i1p1-6