BRAIN TUMOR DETECTION USING BACKPROPAGATION NEURAL NETWORKS

  • Iklas Sanubary
Keywords: Brain Image, backpropagation neural networks, GLCM, Tumor

Abstract

A study of brain tumor detection has been done by making use of backpropagation neural networks with Gray Level Co-Occurrence Matrix (GLCM) feature extraction. CT-Scan images of the brain consist of 12 normal and 13 abnormal (tumor) brain images are analyzed. The preprocessing stage begins with cropping the image to a 256 x 256 pixels picture, then converting the colored images into grayscale images, and equalizing the histogram to improve the quality of the images. GLCM is used to calculate statistical features determined by 5 parameters i.e., contrast, correlation, energy and homogeneity for each direction. In these backpropagation neural networks, the [12 2 1] architecture is used. The correlation coefficient between the target and the output for the training data is 0.999, while the correlation coefficient for the testing data is 0.959 with an accuracy of 70%. The results of this research indicate that backpropagation neural networks can be used for the detection of brain tumors.

Downloads

Download data is not yet available.

References

Anggriyani, N. (2015). Klasifikasi Kanker Serviks Menggunakan Jaringan Syaraf Tiruan Backpropagation dengan Graphical User Interface (GUI). Yogyakarta, Universitas Negeri Yogyakarta

American Brain Tumor Association. (2015). About brain tumors: a primer for patients and caregivers. Chicago, IL, USA: American Brain Tumor Association.

Al-Tamimi, MSH, G. S. (2014). Tumor Brain Detection Through Mr Images: A Review Of Literature. Journal of Theoretical & Applied Information. Retrieved from http://www.jatit.org/volumes/Vol62No2/11Vol62No2.pdf

Eskaprianda, A., Isnanto, R., & Santoso, I. (2011). Deteksi Kondisi Organ Pankreas Melalui Iris Mata Menggunakan Jaringan Syaraf Tiruanmetode Perambatan Balik Dengan Pencirian. Retrieved From Http://Eprints.Undip.Ac.Id/31981/

Gadkari, D. (2004). Image Quality Analysis Using Glcm. Retrieved From Http://Stars.Library.Ucf.Edu/Etd/187/

Handayani, N. (2013). Analisis Metode Jaringan Syaraf Tiruan Backpropgation Untuk Pengenalan Sel Kanker Otak. Retrieved From Http://Elib.Unikom.Ac.Id/Download.Php?Id=222072

Hermawan, A. (2006). Jaringan Saraf Tiruan Teori Dan Aplikasi. Yogyakarta: Andi.

Listia, R, A. H. (2014). Klasifikasi Massa Pada Citra Mammogram Berdasarkan Gray Level Cooccurence Matrix (Glcm). Journal.Ugm.Ac.Id. Retrieved From Https://Journal.Ugm.Ac.Id/Ijccs/Article/View/3496

M Susmikanti. (2010). Pengenalan Pola Berbasis Jaringan Syaraf Tiruan Dalam Analisa Ct Scan Tumor Otak Beligna. Jurnal.Uii.Ac.Id. Retrieved From Http://Www.Jurnal.Uii.Ac.Id/Snati/Article/Download/1954/1729

Nithya, R., & Santhi, B. (2011). Comparative Study On Feature Extraction Method For Breast Cancer Classification. Journal Of Theoretical And Applied Information Technology, 33(2), 1992-86.

Nurkhozin, A., & Irawan, I. M. (2011). Klasifikasi Penyakit Diabetes Mellitus Menggunakan Jaringan Syaraf Tiruan Backpropagation Dan Learning Vector Quantization. Academia.Edu. Retrieved From Http://Www.Academia.Edu/Download/40801576/Its-Master-
17870-1209201703-Paperpdf.Pdf

Ravenel, J. (2003). The Essential Physics Of Medical Imaging , 2nd Ed. American Journal Of Roentgenology, 180(3), 596–596. Https://Doi.Org/10.2214/Ajr.180.3.1800596
Published
2018-12-26
How to Cite
Sanubary, I. (2018). BRAIN TUMOR DETECTION USING BACKPROPAGATION NEURAL NETWORKS. Indonesian Journal of Physics and Nuclear Applications, 3(3), 83-88. https://doi.org/https://doi.org/10.24246/ijpna.v3i3.83-88
Section
Articles