OPTIMIZATION OF COLLIMATOR NEUTRON DESIGN FOR BORON NEUTRON-CAPTURE CANCER THERAPY (BNCT) BASED CYCLOTRON 30 MeV

  • Aniti Payudan Department Physics, FMIPA, Jenderal Soedirman University
  • Aris Haryadi Department Physics, FMIPA, Jenderal Soedirman University
  • Farzand Abdullatif Department Physics, FMIPA, Jenderal Soedirman University
Keywords: BNCT, radiation safety, boron

Abstract

This research in BNCT has a goal to design a collimator that can be used for cancer therapy. Simulations were carried out by MCNPX software. A collimator is designed by cyclotron 30 MeV as a neutron generator. Independent variables varied were material and thickness of each collimator’s component to get five of IAEA’s standard of the neutron beam. The result is two collimator designs that can pass all IAEA’s standard. Those designs are cyclotron collimator I and cyclotron collimator II. Collimator designs obtained are tube collimator consisting of a cylindrical target 7Be length of 1.4 cm and radius 1 cm, a lead wall with thickness 23 cm, cylindrical heavy water moderator (D2O) with radius 3 cm. Filter Cd-nat for cyclotron collimator I with a thickness of 1 mm and a radius 3 cm. Cyclotron collimator II uses 60Ni with a thickness of 5 cm as a filter. The radius aperture is 3 cm. These two collimator designs can be used for cancer treatment with BNCT. Dosimetry calculation and manufacture of prototypes are needed to test the application of this design.

Downloads

Download data is not yet available.

References

Barth, R. F., H Vicente, M. G., Harling, O. K., Kiger, W., Riley, K. J., Binns, P. J., … Kawabata, S. (2012). Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiation Oncology, 7 (1), 146. https://doi.org/10.1186/1748-717X-7-146

Eskandari, M. R., & Kashian, S. (2009). Design of moderator and multiplier systems for D-T neutron source in BNCT. Annals of Nuclear Energy, 36 (8), 1100–1102. https://doi.org/10.1016/j.anucene.2009.05.005

Fantidis, J. G., Saitioti, E., Bandekas, D. V, & Vordos, N. (2013). Optimised BNCT facility based on a compact D-D neutron generator, 11 (4).

Fatimah, N., (2015). Optimasi dimensi Target Berillium dan Dinding Target Timbal dalam Menghasilkan Fluks Neutron Menggunakan Simulasi Program MCNPX. Undergraduate Thesis. Purwokerto: Universitas Jenderal Soedirman.

Febrianto, I.R. (2015). Perancangan Kolimator Neutron untuk BNCT dengan Sumber 7Li (p 30 MeV, n) 7Be Menggunakan Software MCNPX. Undergraduate Thesis. Purwokerto: Universitas Jenderal Soedirman.

F.Erawati, O., Riyatun, and Suharyana. (2015). Modification of Materials and Thickness Layer of Radial Piercing Beamport (RPB) Reflector on Kartini Reactor for Boron Neutron Capture Therapy (BNCT). Indonesian Journal of Applied Physics 5 (1), pp 95-106.

Geng, C., Tang, X., Guan, F., Johns, J., Vasudevan, L., Gong, C., Chen, D. (2014). GEANT4 calculations of neutron dose in radiation protection using a homogeneous phantom and a Chinese hybrid male phantom. Radiation Protection Dosimetry, 168(4), 433–440. https://doi.org/10.1093/rpd/ncv364

Hosmane, Narayan S, Maguire, J. a, & Zhu, Y. (2012). Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment. Russian Chemical Bulletin, 53(9), 1871–1888.

IARC, 2013, Latest World Cancer Statistics Global Cancer Burden rises to 14.1 Million New Cases in 2012: Marked Increase in Breast Cancers must be addressed. International Agency for Reasearch on cancer.

Kreiner, A. J., Bergueiro, J., Cartelli, D., Baldo, M., Castell, W., Asoia, J. G., … Tacca, H. (2016). Present status of Accelerator-Based BNCT. Reports of Practical Oncology and Radiotherapy, 21 (2), 95–101. https://doi.org/10.1016/j.rpor.2014.11.004

Loong, C. K., Sollychin, R., Wong, R. K., Bradley, K., Piestrup, M. A., & Liang, T. (2014). The pros and cons of preliminary R&D of Boron Neutron Capture Therapy based on compact neutron generators: A plan of collaboration. Physics Procedia, 60 (C), 264–270. https://doi.org/10.1016/j.phpro.2014.11.036

MCNPX Development Team., 2008. MCNPX User's Manual. Los Alamos: Los Alamos National Laboratory.

Mitsumoto, T., Fujita, K., Ogasawara, T., Tsutsui, H., Yajima, S., & Industries, S. H. (2010). BNCT System Using 30 Mev H - Cyclotron Hm-30 Cyclotron, c, 6–8.

NIH Publication, N. 0.-1558. (2009). What You Need To Know About Brain Tumors. National Cancer Institute, 51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23050263%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/23026359

Octaviana, E. F., Riyatun, & Suharyana. (2015). Modification of Materials and Thickness Layer of Radial Piercing Beamport (RPB) Reflector on Kartini Reactor for Boron Neutron Capture Therapy (BNCT). Indonesian Journal of Applied Physics, Vol. 5(1), 95.

Rapp, M., Baernreuther, J., Turowski, B., Steiger, H.-J., Sabel, M., & Kamp, M. A. (2017). Recurrence pattern analysis of primary glioblastoma. World Neurosurgery, 103, 733–740. https://doi.org/10.1016/j.wneu.2017.04.053

IAEA. (2001). Current Status of neutron capture therapy. IAEA, 2001 (8), (May), 75–77.

Sardjono, Y., 2014. Status Boron Neutron Capture Cancer Therapy di Indonesia. ISBN 987-602-9431-87-2.Yogyakarta: Jogja Bangkit Publisher.

Susilowati, A.D., 2014. Collimator Design for Neutron on Compact Neutron Generator of Boron Neutron Capture Therapy (BNCT) using MCNP 5. Thesis. Yogyakarta: Gadjah Mada University.

Therapy, N. C. (2012). Neutron Capture Therapy. https://doi.org/10.1007/978-3-642-31334-9

Wahyuningsih, D., 2014. Optimasi Desain Kolimator untuk Uji In Vivo Boron Neutron Capture Therapy (BNCT) pada Beam Port Tembus Reaktor Kartini Menggunakan Simulasi monte Carlo N Particle 5 (MCNP 5). Thesis. Yogyakarta: Gadjah Mada University

WHO. (2017). World Health Statistics 2017.

World Health Organization. (2014). 103,100. Cancer Country Profiles, 22–23.

Yasui, L., Kroc, T., Gladden, S., Andorf, C., Bux, S., & Hosmane, N. (2012). Boron neutron capture in prostate cancer cells. Applied Radiation and Isotopes, 70 (1), 6–12. https://doi.org/10.1016/j.apradiso.2011.07.001
Published
2017-10-30
How to Cite
Payudan, A., Haryadi, A., & Abdullatif, F. (2017). OPTIMIZATION OF COLLIMATOR NEUTRON DESIGN FOR BORON NEUTRON-CAPTURE CANCER THERAPY (BNCT) BASED CYCLOTRON 30 MeV. Indonesian Journal of Physics and Nuclear Applications, 2(3), 128-136. https://doi.org/https://doi.org/10.24246/ijpna.v2i3.128-136
Section
Articles